Advertisement

5-Lipoxygenase

  • Oliver WerzEmail author
  • Olof Rådmark
Chapter
Part of the Progress in Inflammation Research book series (PIR)

Abstract

5-Lipoxygenase (5-LO) catalyzes the first two steps in the biosynthesis of leukotrienes (LTs), lipid mediators of inflammation derived from arachidonic acid. The expression of 5-LO is essentially limited to myeloid cells but 5-LO can be expressed also in non-myeloid cancer cells. In contrast to other human LOs, 5-LO enzyme activity is tightly regulated by interacting proteins and several co-factors including Ca2+/Mg2+, ATP, phospholipids, diglycerides, and lipid hydroperoxides. 5-LO product synthesis in intact cells is modulated by phosphorylations at Ser271, Ser523, and Ser663, an elevated oxidative tone, and subcellular redistribution, apparently together with coactosin-like protein, from a soluble compartment to the nuclear membrane where it colocalizes with 5-LO-activating protein.

Keywords

5-Lipoxygenase Leukotriene Neutrophils FLAP Inflammation Cancer 5-HETE 

Notes

Acknowledgements

Studies in our laboratories were supported by the Swedish Research Council (03X-217), and the DFG (SFB 1127 and FOR 1406).

References

  1. 1.
    Borgeat P, Hamberg M, Samuelsson B (1976) Transformation of arachidonic acid and homo-gamma-linolenic acid by rabbit polymorphonuclear leukocytes. Monohydroxy acids from novel lipoxygenases. J Biol Chem 251(24):7816–7820PubMedGoogle Scholar
  2. 2.
    Borgeat P, Samuelsson B (1979) Arachidonic acid metabolism in polymorphonuclear leukocytes: effects of ionophore A23187. Proc Natl Acad Sci USA 76(5):2148–2152PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Murphy RC, Hammarstrom S, Samuelsson B (1979) Leukotriene C: a slow-reacting substance from murine mastocytoma cells. Proc Natl Acad Sci USA 76(9):4275–4279PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Radmark O, Werz O, Steinhilber D, Samuelsson B (2007) 5-lipoxygenase: regulation of expression and enzyme activity. Trends Biochem Sci 32(7):332–341PubMedCrossRefGoogle Scholar
  5. 5.
    Shimizu T, Rådmark O, Samuelsson B (1984) Enzyme with dual lipoxygenase activities catalyzes leukotriene A4 synthesis from arachidonic acid. Proc Natl Acad Sci USA 81(3):689–693PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Abramovitz M, Wong E, Cox ME, Richardson CD, Li C, Vickers PJ (1993) 5-lipoxygenase-activating protein stimulates the utilization of arachidonic acid by 5-lipoxygenase. Eur J Biochem 215(1):105–111PubMedCrossRefGoogle Scholar
  7. 7.
    Rakonjac M, Fischer L, Provost P, Werz O, Steinhilber D, Samuelsson B et al (2006) Coactosin-like protein supports 5-lipoxygenase enzyme activity and up-regulates leukotriene A4 production. Proc Natl Acad Sci USA 103(35):13150–13155PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Powell WS, Rokach J (2005) Biochemistry, biology and chemistry of the 5-lipoxygenase product 5-oxo-ETE. Prog Lipid Res 44(2–3):154–183PubMedCrossRefGoogle Scholar
  9. 9.
    Serhan CN, Chiang N (2002) Lipid-derived mediators in endogenous anti-inflammation and resolution: lipoxins and aspirin-triggered 15-epi-lipoxins. ScientificWorldJournal 2:169–204PubMedCrossRefGoogle Scholar
  10. 10.
    Radmark O, Samuelsson B (2005) Regulation of 5-lipoxygenase enzyme activity. Biochem Biophys Res Commun 338(1):102–110PubMedCrossRefGoogle Scholar
  11. 11.
    Haeggstrom JZ, Tholander F, Wetterholm A (2007) Structure and catalytic mechanisms of leukotriene A4 hydrolase. Prostaglandins Other Lipid Mediat 83(3):198–202PubMedCrossRefGoogle Scholar
  12. 12.
    Lam BK, Austen KF (2002) Leukotriene C4 synthase: a pivotal enzyme in cellular biosynthesis of the cysteinyl leukotrienes. Prostaglandins Other Lipid Mediat 68–69:511–520PubMedCrossRefGoogle Scholar
  13. 13.
    Gerstmeier J, Weinigel C, Barz D, Werz O, Garscha U (2014) An experimental cell-based model for studying the cell biology and molecular pharmacology of 5-lipoxygenase-activating protein in leukotriene biosynthesis. Biochim Biophys Acta 1840(9):2961–2969PubMedCrossRefGoogle Scholar
  14. 14.
    Gillmor SA, Villasenor A, Fletterick R, Sigal E, Browner MF (1997) The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity. Nat Struct Biol 4(12):1003–1009PubMedCrossRefGoogle Scholar
  15. 15.
    Gilbert NC, Bartlett SG, Waight MT, Neau DB, Boeglin WE, Brash AR et al (2011) The structure of human 5-lipoxygenase. Science 331(6014):217–219PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Newcomer ME, Brash AR (2015) The structural basis for specificity in lipoxygenase catalysis. Protein Sci 24(3):298–309PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Eek P, Jarving R, Jarving I, Gilbert NC, Newcomer ME, Samel N (2012) Structure of a calcium-dependent 11R-lipoxygenase suggests a mechanism for Ca2+ regulation. J Biol Chem 287(26):22377–22386PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Rakonjac Ryge M, Tanabe M, Provost P, Persson B, Chen X, Funk CD et al (2014) A mutation interfering with 5-lipoxygenase domain interaction leads to increased enzyme activity. Arch Biochem Biophys 545:179–185PubMedCrossRefGoogle Scholar
  19. 19.
    Kulkarni S, Das S, Funk CD, Murray D, Cho W (2002) A molecular basis of specific subcellular localization of the C2-like domain of 5-lipoxygenase. J Biol Chem 277(15):13167–13174PubMedCrossRefGoogle Scholar
  20. 20.
    Allard JB, Brock TG (2005) Structural organization of the regulatory domain of human 5-lipoxygenase. Curr Protein Pept Sci 6(2):125–131PubMedCrossRefGoogle Scholar
  21. 21.
    Evans JF, Ferguson AD, Mosley RT, Hutchinson JH (2008) What's all the FLAP about?: 5-lipoxygenase-activating protein inhibitors for inflammatory diseases. Trends Pharmacol Sci 29(2):72–78PubMedCrossRefGoogle Scholar
  22. 22.
    Jakobsson PJ, Morgenstern R, Mancini J, Ford-Hutchinson A, Persson B (2000) Membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG). A widespread protein superfamily. Am J Respir Crit Care Med 161(2 Pt 2):S20–24PubMedCrossRefGoogle Scholar
  23. 23.
    Dixon RAF, Diehl RE, Opas E, Rands E, Vickers PJ, Evans JF et al (1990) Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature 343:282–284PubMedCrossRefGoogle Scholar
  24. 24.
    Miller DK, Gillard JW, Vickers PJ, Sadowski S, Léveillé C, Mancini JA et al (1990) Identification and isolation of a membrane protein necessary for leukotriene production. Nature 343:278–281PubMedCrossRefGoogle Scholar
  25. 25.
    Mancini JA, Waterman H, Riendeau D (1998) Cellular oxygenation of 12-hydroxyeicosatetraenoic acid and 15-hydroxyeicosatetraenoic acid by 5-lipoxygenase is stimulated by 5-lipoxygenase-activating protein. J Biol Chem 273(49):32842–32847PubMedCrossRefGoogle Scholar
  26. 26.
    Plante H, Picard S, Mancini J, Borgeat P (2006) 5-lipoxygenase-activating protein homodimer in human neutrophils: evidence for a role in leukotriene biosynthesis. Biochem J 393(Pt 1):211–218PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Mandal AK, Skoch J, Bacskai BJ, Hyman BT, Christmas P, Miller D et al (2004) The membrane organization of leukotriene synthesis. Proc Natl Acad Sci USA 101(17):6587–6592PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ferguson AD, McKeever BM, Xu S, Wisniewski D, Miller DK, Yamin TT et al (2007) Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein. Science 317(5837):510–512PubMedCrossRefGoogle Scholar
  29. 29.
    Mandal AK, Jones PB, Bair AM, Christmas P, Miller D, Yamin TT et al (2008) The nuclear membrane organization of leukotriene synthesis. Proc Natl Acad Sci USA 105(51):20434–20439PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Strid T, Svartz J, Franck N, Hallin E, Ingelsson B, Soderstrom M et al (2009) Distinct parts of leukotriene C(4) synthase interact with 5-lipoxygenase and 5-lipoxygenase activating protein. Biochem Biophys Res Commun 381(4):518–522PubMedCrossRefGoogle Scholar
  31. 31.
    Brock TG, Paine R, Petersgolden M (1994) Localization of 5-lipoxygenase to the nucleus of unstimulated rat basophilic leukemia cells. J Biol Chem 269(35):22059–22066PubMedGoogle Scholar
  32. 32.
    You HJ, Seo JM, Moon JY, Han SS, Ko YG, Kim JH (2007) Leukotriene synthesis in response to A23187 is inhibited by methyl-beta-cyclodextrin in RBL-2H3 cells. Mol Cells 23(1):57–63PubMedGoogle Scholar
  33. 33.
    Boyd RS, Jukes-Jones R, Walewska R, Brown D, Dyer MJ, Cain K (2009) Protein profiling of plasma membranes defines aberrant signaling pathways in mantle cell lymphoma. Mol Cell Proteomics 8(7):1501–1515PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Jethwaney D, Islam MR, Leidal KG, de Bernabe DB, Campbell KP, Nauseef WM et al (2007) Proteomic analysis of plasma membrane and secretory vesicles from human neutrophils. Proteome Sci 5:12PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Esser J, Gehrmann U, D’Alexandri FL, Hidalgo-Estevez AM, Wheelock CE, Scheynius A, et al (2010) Exosomes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulocyte migration. J Allergy Clin Immunol 126(5):1032–1040, 1040 e1031–1034Google Scholar
  36. 36.
    Hou X, Katahira T, Ohashi K, Mizuno K, Sugiyama S, Nakamura H (2013) Coactosin accelerates cell dynamism by promoting actin polymerization. Dev Biol 379(1):53–63PubMedCrossRefGoogle Scholar
  37. 37.
    Provost P, Samuelsson B, Radmark O (1999) Interaction of 5-lipoxygenase with cellular proteins. Proc Natl Acad Sci USA 96(5):1881–1885PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Provost P, Doucet J, Hammarberg T, Gerisch G, Samuelsson B, Radmark O (2001) 5-lipoxygenase interacts with coactosin-like protein. J Biol Chem 276(19):16520–16527PubMedCrossRefGoogle Scholar
  39. 39.
    Feisst C, Pergola C, Rakonjac M, Rossi A, Koeberle A, Dodt G et al (2009) Hyperforin is a novel type of 5-lipoxygenase inhibitor with high efficacy in vivo. Cell Mol Life Sci 66(16):2759–2771PubMedCrossRefGoogle Scholar
  40. 40.
    Basavarajappa D, Wan M, Lukic A, Steinhilber D, Samuelsson B, Radmark O (2014) Roles of coactosin-like protein (CLP) and 5-lipoxygenase-activating protein (FLAP) in cellular leukotriene biosynthesis. Proc Natl Acad Sci USA 111(31):11371–11376PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Perron MP, Provost P (2009) Protein components of the microRNA pathway and human diseases. Methods Mol Biol 487:369–385PubMedPubMedCentralGoogle Scholar
  42. 42.
    Provost P, Dishart D, Doucet J, Frendewey D, Samuelsson B, Radmark O (2002) Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J 21(21):5864–5874PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Dincbas-Renqvist V, Pepin G, Rakonjac M, Plante I, Ouellet DL, Hermansson A et al (2009) Human Dicer C-terminus functions as a 5-lipoxygenase binding domain. Biochim Biophys Acta 1789(2):99–108PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Sala A, Folco G, Murphy RC (2010) Transcellular biosynthesis of eicosanoids. Pharmacol Rep 62(3):503–510PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Werz O, Steinhilber D (2005) Development of 5-lipoxygenase inhibitors—lessons from cellular enzyme regulation. Biochem Pharmacol 70(3):327–333PubMedCrossRefGoogle Scholar
  46. 46.
    Leslie CC (2004) Regulation of the specific release of arachidonic acid by cytosolic phospholipase A2. Prostaglandins Leukot Essent Fatty Acids 70(4):373–376PubMedCrossRefGoogle Scholar
  47. 47.
    Werz O (2002) 5-lipoxygenase: cellular biology and molecular pharmacology. Curr Drug Targets Inflamm Allergy 1(1):23–44PubMedCrossRefGoogle Scholar
  48. 48.
    Werz O, Burkert E, Samuelsson B, Radmark O, Steinhilber D (2002) Activation of 5-lipoxygenase by cell stress is calcium independent in human polymorphonuclear leukocytes. Blood 99(3):1044–1052PubMedCrossRefGoogle Scholar
  49. 49.
    Krump E, Picard S, Mancini J, Borgeat P (1997) Suppression of leukotriene B-4 biosynthesis by endogenous adenosine in ligand-activated human neutrophils. J Exp Med 186(8):1401–1406PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Pergola C, Dodt G, Rossi A, Neunhoeffer E, Lawrenz B, Northoff H et al (2008) ERK-mediated regulation of leukotriene biosynthesis by androgens: a molecular basis for gender differences in inflammation and asthma. Proc Natl Acad Sci USA 105(50):19881–19886PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Pergola C, Rogge A, Dodt G, Northoff H, Weinigel C, Barz D et al (2011) Testosterone suppresses phospholipase D, causing sex differences in leukotriene biosynthesis in human monocytes. FASEB J 25(10):3377–3387PubMedCrossRefGoogle Scholar
  52. 52.
    Reddy KV, Hammarberg T, Radmark O (2000) Mg2+ activates 5-lipoxygenase in vitro: dependency on concentrations of phosphatidylcholine and arachidonic acid. Biochemistry 39(7):1840–1848PubMedCrossRefGoogle Scholar
  53. 53.
    Hammarberg T, Radmark O (1999) 5-lipoxygenase binds calcium. Biochemistry 38(14):4441–4447PubMedCrossRefGoogle Scholar
  54. 54.
    Hammarberg T, Provost P, Persson B, Radmark O (2000) The N-terminal domain of 5-lipoxygenase binds calcium and mediates calcium stimulation of enzyme activity. J Biol Chem 275(49):38787–38793PubMedCrossRefGoogle Scholar
  55. 55.
    Buerkert E, Arnold C, Hammarberg T, Radmark O, Steinhilber D, Werz O (2003) The C2-like {beta}-barrel domain mediates the Ca2+-dependent resistance of 5-lipoxygenase activity against inhibition by glutathione peroxidase-1. J Biol Chem 31:31Google Scholar
  56. 56.
    Noguchi M, Miyano M, Matsumoto T (1996) Physicochemical characterization of ATP binding to human 5-lipoxygenase. Lipids 31(4):367–371PubMedCrossRefGoogle Scholar
  57. 57.
    Puustinen T, Scheffer MM, Samuelsson B (1988) Regulation of the human leukocyte 5-lipoxygenase: stimulation by micromolar calcium levels and phosphatidylcholine vesicles. Biochim Biophys Acta 960(3):261–267PubMedCrossRefGoogle Scholar
  58. 58.
    Skorey KI, Gresser MJ (1998) Calcium is not required for 5-lipoxygenase activity at high phosphatidyl choline vesicle concentrations. Biochemistry 37(22):8027–8034PubMedCrossRefGoogle Scholar
  59. 59.
    Zhang YY, Hammarberg T, Rådmark O, Samuelsson B, Ng CF, Funk CD et al (2000) Analysis of a nucleotide-binding site of 5-lipoxygenase by affinity labelling: binding characteristics and amino acid sequences. Biochem J 351(Pt 3):697–707PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Okamoto H, Hammarberg T, Zhang YY, Persson B, Watanabe T, Samuelsson B et al (2005) Mutation analysis of the human 5-lipoxygenase C-terminus: support for a stabilizing C-terminal loop. Biochim Biophys Acta 1749(1):123–131PubMedCrossRefGoogle Scholar
  61. 61.
    Walther M, Hofheinz K, Vogel R, Roffeis J, Kuhn H (2011) The N-terminal beta-barrel domain of mammalian lipoxygenases including mouse 5-lipoxygenase is not essential for catalytic activity and membrane binding but exhibits regulatory functions. Arch Biochem Biophys 516(1):1–9PubMedCrossRefGoogle Scholar
  62. 62.
    Rouzer CA, Shimizu T, Samuelsson B (1985) On the nature of the 5-lipoxygenase reaction in human leukocytes: characterization of a membrane-associated stimulatory factor. Proc Natl Acad Sci USA 82:7505–7509PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Noguchi M, Miyano M, Matsumoto T, Noma M (1994) Human 5-lipoxygenase associates with phosphatidylcholine liposomes and modulates LTA(4) synthetase activity. Biochim Biophys Acta 1215(3):300–306PubMedCrossRefGoogle Scholar
  64. 64.
    Chen XS, Funk CD (2001) The N-terminal “beta-barrel” domain of 5-lipoxygenase is essential for nuclear membrane translocation. J Biol Chem 276(1):811–818PubMedCrossRefGoogle Scholar
  65. 65.
    Pande AH, Moe D, Nemec KN, Qin S, Tan S, Tatulian SA (2004) Modulation of human 5-lipoxygenase activity by membrane lipids. Biochemistry 43(46):14653–14666PubMedCrossRefGoogle Scholar
  66. 66.
    Pande AH, Qin S, Tatulian SA (2005) Membrane fluidity is a key modulator of membrane binding, insertion, and activity of 5-lipoxygenase. Biophys J 88(6):4084–4094PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hornig C, Albert D, Fischer L, Hornig M, Radmark O, Steinhilber D et al (2005) 1-Oleoyl-2-acetylglycerol stimulates 5-lipoxygenase activity via a putative (phospho)lipid binding site within the N-terminal C2-like domain. J Biol Chem 280(29):26913–26921PubMedCrossRefGoogle Scholar
  68. 68.
    Albert D, Buerkert E, Steinhilber D, Werz O (2003) Induction of 5-lipoxygenase activation in polymorphonuclear leukocytes by 1-oleoyl-2-acetylglycerol. Biochim Biophys Acta 1631(1):85–93PubMedCrossRefGoogle Scholar
  69. 69.
    Albert D, Pergola C, Koeberle A, Dodt G, Steinhilber D, Werz O (2008) The role of diacylglyceride generation by phospholipase D and phosphatidic acid phosphatase in the activation of 5-lipoxygenase in polymorphonuclear leukocytes. J Leukoc Biol 83(4):1019–1027PubMedCrossRefGoogle Scholar
  70. 70.
    Fredman G, Ozcan L, Spolitu S, Hellmann J, Spite M, Backs J et al (2014) Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B4 synthesis by inhibiting a calcium-activated kinase pathway. Proc Natl Acad Sci USA 111(40):14530–14535PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Werz O, Burkert E, Fischer L, Szellas D, Dishart D, Samuelsson B et al (2002) Extracellular signal-regulated kinases phosphorylate 5-lipoxygenase and stimulate 5-lipoxygenase product formation in leukocytes. FASEB J 16(11):1441–1443PubMedGoogle Scholar
  72. 72.
    Werz O, Klemm J, Radmark O, Samuelsson B (2001) p38 MAP kinase mediates stress-induced leukotriene synthesis in a human B-lymphocyte cell line. J Leukoc Biol 70(5):830–838PubMedGoogle Scholar
  73. 73.
    Werz O, Klemm J, Samuelsson B, Rådmark O (2001) Phorbol ester up-regulates capacities for nuclear translocation and phosphorylation of 5-lipoxygenase in Mono Mac 6 cells and human polymorphonuclear leukocytes. Blood 97(8):2487–2495PubMedCrossRefGoogle Scholar
  74. 74.
    Werz O, Klemm J, Samuelsson B, Radmark O (2000) 5-lipoxygenase is phosphorylated by p38 kinase dependent MAPKAP kinases. Proc Natl Acad Sci USA 97(10):5261–5266PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Luo M, Jones SM, Phare SM, Coffey MJ, Peters-Golden M, Brock TG (2004) Protein kinase A inhibits leukotriene synthesis by phosphorylation of 5-lipoxygenase on serine 523. J Biol Chem 279(40):41512–41520PubMedCrossRefGoogle Scholar
  76. 76.
    Luo M, Jones SM, Flamand N, Aronoff DM, Peters-Golden M, Brock TG (2005) Phosphorylation by protein kinase a inhibits nuclear import of 5-lipoxygenase. J Biol Chem 280(49):40609–40616PubMedCrossRefGoogle Scholar
  77. 77.
    Flamand N, Surette ME, Picard S, Bourgoin S, Borgeat P (2002) Cyclic AMP-mediated inhibition of 5-lipoxygenase translocation and leukotriene biosynthesis in human neutrophils. Mol Pharmacol 62(2):250–256PubMedCrossRefGoogle Scholar
  78. 78.
    Radmark O, Werz O, Steinhilber D, Samuelsson B (2014) 5-lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim Biophys Acta 1851(4):331–339Google Scholar
  79. 79.
    Markoutsa S, Surun D, Karas M, Hofmann B, Steinhilber D, Sorg BL (2014) Analysis of 5-lipoxygenase phosphorylation on molecular level by MALDI-MS. FEBS J 281(8):1931–1947PubMedCrossRefGoogle Scholar
  80. 80.
    Newcomer ME, Gilbert NC (2010) Location, location, location: compartmentalization of early events in leukotriene biosynthesis. J Biol Chem 285(33):25109–25114PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Luo M, Jones SM, Peters-Golden M, Brock TG (2003) Nuclear localization of 5-lipoxygenase as a determinant of leukotriene B4 synthetic capacity. Proc Natl Acad Sci USA 100(21):12165–12170PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Bair AM, Turman MV, Vaine CA, Panettieri RA Jr, Soberman RJ (2012) The nuclear membrane leukotriene synthetic complex is a signal integrator and transducer. Mol Biol Cell 23(22):4456–4464PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Rossi A, Pergola C, Pace S, Radmark O, Werz O, Sautebin L (2014) In vivo sex differences in leukotriene biosynthesis in zymosan-induced peritonitis. Pharmacol Res 87:1–7PubMedCrossRefGoogle Scholar
  84. 84.
    Haribabu B, Verghese MW, Steeber DA, Sellars DD, Bock CB, Snyderman R (2000) Targeted disruption of the leukotriene B(4) receptor in mice reveals its role in inflammation and platelet-activating factor-induced anaphylaxis. J Exp Med 192(3):433–438PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Goulet JL, Griffiths RC, Ruiz P, Spurney RF, Pisetsky DS, Koller BH et al (1999) Deficiency of 5-lipoxygenase abolishes sex-related survival differences in MRL-lpr/lpr mice. J Immunol 163(1):359–366PubMedGoogle Scholar
  86. 86.
    Poeckel D, Zemski Berry KA, Murphy RC, Funk CD (2009) Dual 12/15- and 5-lipoxygenase deficiency in macrophages alters arachidonic acid metabolism and attenuates peritonitis and atherosclerosis in ApoE knock-out mice. J Biol Chem 284(31):21077–21089PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Funk CD, Hoshiko S, Matsumoto T, Rdmark O, Samuelsson B (1989) Characterization of the human 5-lipoxygenase gene. Proc Natl Acad Sci USA 86(8):2587–2591PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Uhl J, Klan N, Rose M, Entian KD, Werz O, Steinhilber D (2002) The 5-lipoxygenase promoter is regulated by DNA methylation. J Biol Chem 277(6):4374–4379PubMedCrossRefGoogle Scholar
  89. 89.
    Katryniok C, Schnur N, Gillis A, von Knethen A, Sorg BL, Looijenga L et al (2010) Role of DNA methylation and methyl-DNA binding proteins in the repression of 5-lipoxygenase promoter activity. Biochim Biophys Acta 1801(1):49–57PubMedCrossRefGoogle Scholar
  90. 90.
    Hoshiko S, Radmark O, Samuelsson B (1990) Characterization of the human 5-lipoxygenase gene promoter. Proc Natl Acad Sci USA 87(23):9073–9077PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    In KH, Silverman ES, Asano K, Beier D, Fischer AR, Keith TP et al (1999) Mutations in the human 5-lipoxygenase gene. Clin Rev Allergy Immunol 17(1-2):59–69PubMedCrossRefGoogle Scholar
  92. 92.
    Silverman ES, Du J, De Sanctis GT, Radmark O, Samuelsson B, Drazen JM et al (1998) Egr-1 and Sp1 interact functionally with the 5-lipoxygenase promoter and its naturally occurring mutants. Am J Respir Cell Mol Biol 19(2):316–323PubMedCrossRefGoogle Scholar
  93. 93.
    Dishart D, Schnur N, Klan N, Werz O, Steinhilber D, Samuelsson B et al (2005) GC-rich sequences in the 5-lipoxygenase gene promoter are required for expression in Mono Mac 6 cells, characterization of a novel Sp1 binding site. Biochim Biophys Acta 1738(1-3):37–47PubMedCrossRefGoogle Scholar
  94. 94.
    Klan N, Seuter S, Schnur N, Jung M, Steinhilber D (2003) Trichostatin A and structurally related histone deacetylase inhibitors induce 5-lipoxygenase promoter activity. Biol Chem 384(5):777–785PubMedCrossRefGoogle Scholar
  95. 95.
    Schnur N, Seuter S, Katryniok C, Radmark O, Steinhilber D (2007) The histone deacetylase inhibitor trichostatin A mediates upregulation of 5-lipoxygenase promoter activity by recruitment of Sp1 to distinct GC-boxes. Biochim Biophys Acta 1771(10):1271–1282PubMedCrossRefGoogle Scholar
  96. 96.
    Ahmad K, Katryniok C, Scholz B, Merkens J, Loscher D, Marschalek R et al (2014) Inhibition of class I HDACs abrogates the dominant effect of MLL-AF4 by activation of wild-type MLL. Oncogenesis 3:e127PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Drazen JM, Yandava CN, Dube L, Szczerback N, Hippensteel R, Pillari A et al (1999) Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat Genet 22(2):168–170PubMedCrossRefGoogle Scholar
  98. 98.
    Kalayci O, Birben E, Sackesen C, Keskin O, Tahan F, Wechsler ME et al (2006) ALOX5 promoter genotype, asthma severity and LTC production by eosinophils. Allergy 61(1):97–103PubMedCrossRefGoogle Scholar
  99. 99.
    Kim SH, Bae JS, Suh CH, Nahm DH, Holloway JW, Park HS (2005) Polymorphism of tandem repeat in promoter of 5-lipoxygenase in ASA-intolerant asthma: a positive association with airway hyperresponsiveness. Allergy 60(6):760–765PubMedCrossRefGoogle Scholar
  100. 100.
    Mougey E, Lang JE, Allayee H, Teague WG, Dozor AJ, Wise RA et al (2013) ALOX5 polymorphism associates with increased leukotriene production and reduced lung function and asthma control in children with poorly controlled asthma. Clin Exp Allergy 43(5):512–520PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Sayers I, Barton S, Rorke S, Sawyer J, Peng Q, Beghe B et al (2003) Promoter polymorphism in the 5-lipoxygenase (ALOX5) and 5-lipoxygenase-activating protein (ALOX5AP) genes and asthma susceptibility in a Caucasian population. Clin Exp Allergy 33(8):1103–1110PubMedCrossRefGoogle Scholar
  102. 102.
    Telleria JJ, Blanco-Quiros A, Varillas D, Armentia A, Fernandez-Carvajal I, Jesus Alonso M et al (2008) ALOX5 promoter genotype and response to montelukast in moderate persistent asthma. Respir Med 102(6):857–861PubMedCrossRefGoogle Scholar
  103. 103.
    Dwyer JH, Allayee H, Dwyer KM, Fan J, Wu H, Mar R et al (2004) Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N Engl J Med 350(1):29–37PubMedCrossRefGoogle Scholar
  104. 104.
    Assimes TL, Knowles JW, Priest JR, Basu A, Volcik KA, Southwick A et al (2008) Common polymorphisms of ALOX5 and ALOX5AP and risk of coronary artery disease. Hum Genet 123(4):399–408PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Gonzalez P, Reguero JR, Lozano I, Moris C, Coto E (2007) A functional Sp1/Egr1-tandem repeat polymorphism in the 5-lipoxygenase gene is not associated with myocardial infarction. Int J Immunogenet 34(2):127–130PubMedCrossRefGoogle Scholar
  106. 106.
    Maznyczka A, Braund P, Mangino M, Samani NJ (2008) Arachidonate 5-lipoxygenase (5-LO) promoter genotype and risk of myocardial infarction: a case-control study. Atherosclerosis 199(2):328–332PubMedCrossRefGoogle Scholar
  107. 107.
    Todur SP, Ashavaid TF (2012) Association of Sp1 tandem repeat polymorphism of ALOX5 with coronary artery disease in Indian subjects. Clin Transl Sci 5(5):408–411PubMedCrossRefGoogle Scholar
  108. 108.
    Herb F, Thye T, Niemann S, Browne EN, Chinbuah MA, Gyapong J et al (2008) ALOX5 variants associated with susceptibility to human pulmonary tuberculosis. Hum Mol Genet 17(7):1052–1060PubMedCrossRefGoogle Scholar
  109. 109.
    Silverman ES, Le L, Baron RM, Hallock A, Hjoberg J, Shikanai T et al (2002) Cloning and functional analysis of the mouse 5-lipoxygenase promoter. Am J Respir Cell Mol Biol 26(4):475–483PubMedCrossRefGoogle Scholar
  110. 110.
    Sorg BL, Klan N, Seuter S, Dishart D, Radmark O, Habenicht A et al (2006) Analysis of the 5-lipoxygenase promoter and characterization of a vitamin D receptor binding site. Biochim Biophys Acta 1761(7):686–697PubMedCrossRefGoogle Scholar
  111. 111.
    Seuter S, Vaisanen S, Radmark O, Carlberg C, Steinhilber D (2007) Functional characterization of vitamin D responding regions in the human 5-lipoxygenase gene. Biochim Biophys Acta 1771(7):864–872PubMedCrossRefGoogle Scholar
  112. 112.
    Stoffers KL, Sorg BL, Seuter S, Rau O, Radmark O, Steinhilber D (2010) Calcitriol upregulates open chromatin and elongation markers at functional vitamin D response elements in the distal part of the 5-lipoxygenase gene. J Mol Biol 395(4):884–896PubMedCrossRefGoogle Scholar
  113. 113.
    Steinhilber D (1999) 5-lipoxygenase: a target for antiinflammatory drugs revisited. Curr Med Chem 6(1):71–85PubMedGoogle Scholar
  114. 114.
    Harle D, Radmark O, Samuelsson B, Steinhilber D (1998) Calcitriol and transforming growth factor-beta upregulate 5-lipoxygenase mRNA expression by increasing gene transcription and mRNA maturation. Eur J Biochem 254(2):275–281PubMedCrossRefGoogle Scholar
  115. 115.
    Seuter S, Sorg BL, Steinhilber D (2006) The coding sequence mediates induction of 5-lipoxygenase expression by Smads3/4. Biochem Biophys Res Commun 348(4):1403–1410PubMedCrossRefGoogle Scholar
  116. 116.
    Boudreau LH, Bertin J, Robichaud PP, Laflamme M, Ouellette RJ, Flamand N et al (2011) Novel 5-lipoxygenase isoforms affect the biosynthesis of 5-lipoxygenase products. FASEB J 25(3):1097–1105PubMedCrossRefGoogle Scholar
  117. 117.
    Ochs MJ, Sorg BL, Pufahl L, Grez M, Suess B, Steinhilber D (2012) Post-transcriptional regulation of 5-lipoxygenase mRNA expression via alternative splicing and nonsense-mediated mRNA decay. PLoS One 7(2):e31363PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Fredman G, Li Y, Dalli J, Chiang N, Serhan CN (2012) Self-limited versus delayed resolution of acute inflammation: temporal regulation of pro-resolving mediators and microRNA. Sci Rep 2:639PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Busch S, Auth E, Scholl F, Huenecke S, Koehl U, Suess B et al (2015) 5-lipoxygenase is a direct target of miR-19a-3p and miR-125b-5p. J Immunol 194(4):1646–1653PubMedCrossRefGoogle Scholar
  120. 120.
    Esser J, Rakonjac M, Hofmann B, Fischer L, Provost P, Schneider G, Steinhilber D, Samuelsson B, Rådmark O (2009) Coactosin-like protein functions as a stabilizing chaperone for 5-lipoxygenase: role of tryptophan 102. Biochem J 425(1):265–274Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Pharmaceutical/Medicinal Chemistry, Institute of PharmacyUniversity JenaJenaGermany
  2. 2.Division of Chemistry II, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnaSweden

Personalised recommendations