Service Oriented Big Data Management for Transport

  • Gavin KempEmail author
  • Genoveva Vargas-Solar
  • Catarina Ferreira Da Silva
  • Parisa Ghodous
  • Christine Collet
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 579)


The increasing power of computer hardware and the sophistication of computer software have brought many new possibilities to information world. On one side the possibility to analyze massive data sets has brought new insight, knowledge and information. On the other, it has enabled to massively distribute computing and has opened to a new programming paradigm called Service Oriented Computing particularly well adapted to cloud computing. Applying these new technologies to the transport industry can bring new understanding to town transport infrastructures. The objective of our work is to manage and aggregate cloud services for managing big data and assist decision making for transport systems. Thus this paper presents our approach to propose a service oriented architecture for big data analytics for transport systems based on the cloud. Proposing big data management strategies for data produced by transport infrastructures, whilst maintaining cost effective systems deployed on the cloud, is a promising approach. We present the advancement for developing the Data acquisition service and Information extraction and cleaning service as well as the analysis for choosing a sharding strategy.


ITS Big data Cloud services NoSQL Service oriented architecture 



We thank the Région Rhône-Alpes who finances the thesis work of Gavin Kemp by means of the ARC 7 programme (, as well as the competitiveness cluster LUTB Transport & Mobility Systems, in particularly Mr. Pascal Nief, Mr. Timothée David and Mr. Philippe Gache for putting us in contact with local companies and projects to gather use case scenarios for our work.


  1. 1.
    Gulisano, V., Jiménez-Peris, R., Patiño-Mart́nez, M., Soriente, C., Valduriez, P.: StreamCloud: an elastic and scalable data streaming system. IEEE Trans. Parallel Distrib. Syst. 23, 2351–2365 (2012)CrossRefGoogle Scholar
  2. 2.
    Lecue, F., Tallevi-Diotallevi, S., Hayes, J., Tucker, R., Bicer, V., Sbodio, M.L., Tommasi, P.: STAR-CITY. In: Proceedings of the 19th international conference on Intelligent User Interfaces - IUI 2014, pp. 179–188 (2014)Google Scholar
  3. 3.
    Demiryurek, U., Banaei-Kashani, F., Shahabi, C.: TransDec: a spatiotemporal query processing framework for transportation systems. In: Proceedings of 26th IEEE International Conference on Data Engineering, pp. 1197–1200 (2010)Google Scholar
  4. 4.
    Jagadish, H.V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J.M., Ramakrishnan, R., Shahabi, C.: Big Data and Its Technical Challenges, vol. 57, no. 7 (2014)CrossRefGoogle Scholar
  5. 5.
    Mell, P., Grance, T.: The NIST definition of cloud computing recommendations of the national institute of standards and technology (2008)Google Scholar
  6. 6.
    Artikis, A., Weidlich, M., Gal, A., Kalogeraki, V., Gunopulos, D.: Self-Adaptive Event Recognition for Intelligent Transport Management, pp. 319–325 (2013)Google Scholar
  7. 7.
    Thompson, D., McHale, G., Butler, R.: RITA (2014).
  8. 8.
    Jian, L., Yuanhua, J., Zhiqiang, S., Xiaodong, Z.: Improved design of communication platform of distributed traffic information systems based on SOA. In: 2008 International Symposium on Information Science and Engineering, vol. 2, pp. 124–128 (2008)Google Scholar
  9. 9.
    Yuan, N.J., Zheng, Y., Zhang, L., Xie, X.: T-finder: a recommender system for finding passengers and vacant taxis. IEEE Trans. Knowl. Data Eng. 25, 2390–2403 (2013)CrossRefGoogle Scholar
  10. 10.
    Ge, Y., Xiong, H., Tuzhilin, A., Xiao, K., Gruteser, M., Pazzani, M.: An energy-efficient mobile recommender system. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD 2010, p. 899 (2010)Google Scholar
  11. 11.
    Lee, D.-H., Wang, H., Cheu, R., Teo, S.: Taxi dispatch system based on current demands and real-time traffic conditions. Trans. Res. Rec. 1882, 193–200 (2004)CrossRefGoogle Scholar
  12. 12.
    Talia, D.: Clouds for scalable big data analytics. Computer (Long. Beach. California), vol. 46, no. 5, pp. 98–101 (2013)CrossRefGoogle Scholar
  13. 13.
    Yu, J., Jiang, F., Zhu, T.: RTIC-C: a big data system for massive traffic information mining. In: 2013 International Conference on Cloud Computing and Big Data, pp. 395–402 (2013)Google Scholar
  14. 14.
    Chen, X., Vo, H., Aji, A., Wang, F.: High performance integrated spatial big data analytics. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data - BigSpatial 2014, pp. 11–14 (2014)Google Scholar
  15. 15.
    Lin, J., Ryaboy, D.: Scaling big data mining infrastructure : the twitter experience. ACM SIGKDD Explor. Newsl. 14(2), 6 (2013)CrossRefGoogle Scholar
  16. 16.
    Tavakoli, S., Mousavi, A.: Adopting user interacted mobile node data to the flexible data input layer architecture. In: 2008 International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 533–538 (2008)Google Scholar
  17. 17.
    Berson, A., Smith, S., Thearling, K.: An overview of data mining techniques. Data Min. Appl. CRM, pp. 1–49 (2004)Google Scholar
  18. 18.
    Yan, W., Brahmakshatriya, U., Xue, Y., Gilder, M., Wise, B.: p-PIC: parallel power iteration clustering for big data. J. Parallel Distrib. Comput. 73(3), 352–359 (2013)CrossRefGoogle Scholar
  19. 19.
    Das, S., Haas, P.J., Beyer, K.S.: Ricardo: integrating R and hadoop categories and subject descriptors, pp. 987–998 (2000)Google Scholar
  20. 20.
    Lim, S.: Scalable SQL and NoSQL data stores, Statistics (Ber) (2008)Google Scholar
  21. 21.
    Zheng, Z., Zhu, J., Lyu, M.R.: Service-generated big data and big data-as-a-service: an overview. In: 2013 IEEE Proceedings of the International Congress on Big Data, pp. 403–410 (2013)Google Scholar
  22. 22.
    Demirkan, H., Delen, D.: Leveraging the capabilities of service-oriented decision support systems: Putting analytics and big data in cloud. Decis. Support Syst. 55(1), 412–421 (2013)CrossRefGoogle Scholar
  23. 23.
    Schadt, E.E., Linderman, M.D., Sorenson, J., Lee, L., Nolan, G.P.: Cloud and heterogeneous computing solutions exist today for the emerging big data problems in biology. Nat. Rev. Genet. 12(3), 224 (2011)CrossRefGoogle Scholar
  24. 24.
    Li, Z., Yang, C., Jin, B., Yu, M., Liu, K., Sun, M., Zhan, M.: Enabling big geoscience data analytics with a cloud-based, MapReduce-enabled and service-oriented workflow framework. PLoS One 10(3), e0116781 (2015)CrossRefGoogle Scholar
  25. 25.
    Abramova, V., Bernardino, J.: NoSQL databases: a step to database scalability in web environment. In: Proceedings of the International C* Conference on Computer Science Software Engineering - C3S2E 2013, pp. 14–22 (2013)Google Scholar
  26. 26.
    Hipgrave, S.: Smarter fraud investigations with big data analytics. Netw. Secur. 2013(12), 7–9 (2013)CrossRefGoogle Scholar
  27. 27.
    Tannahill, B.K., Jamshidi, M.: System of Systems and Big Data analytics – Bridging the gap. Comput. Electr. Eng. 40(1), 2–15 (2014)CrossRefGoogle Scholar
  28. 28.
    Sadalage, P.J., Fowler, M.: NoSQL Distilled (2012)Google Scholar
  29. 29.
    Open, “Openstack,” (2015).
  30. 30.
    Buneman, P., Fernandez, M., Suciu, D.: UnQL: a query language and algebra for semistructured data based on structural recursion. VLDB J. 9(1), 76 (2000)CrossRefGoogle Scholar
  31. 31.
    Nance, C., Losser, T., Iype, R., Harmon, G.: NoSQL vs RDBMS - why there is room for both. In: Proceedings Southern Association Information System Conference, pp. 111–116 (2013)Google Scholar
  32. 32.
    Cattell, R.: Scalable SQL and NoSQL data stores. ACM SIGMOD Rec. 39(4), 12 (2011)CrossRefGoogle Scholar
  33. 33.
    GrandLyon: Smart Data (2015).

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gavin Kemp
    • 1
    Email author
  • Genoveva Vargas-Solar
    • 2
    • 3
  • Catarina Ferreira Da Silva
    • 1
  • Parisa Ghodous
    • 1
  • Christine Collet
    • 2
  1. 1.Université Lyon 1, LIRIS, CNRS, UMR5202LyonFrance
  2. 2.Grenoble Institute of Technology, LIGGrenobleFrance
  3. 3.LIG-LAFMIA, CNRSGrenobleFrance

Personalised recommendations