Advertisement

Toward Building a Content-Based Video Recommendation System Based on Low-Level Features

  • Yashar Deldjoo
  • Mehdi Elahi
  • Massimo Quadrana
  • Paolo Cremonesi
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 239)

Abstract

One of the challenges in video recommendation systems is the New Item problem, which happens when the system is unable to recommend video items, that no information is available about them. For example, in the popular movie-sharing websites, such as Youtube, everyday, hundred millions of hours of videos are uploaded and big portion of these videos may not contain any meta-data, to be used by the system to generate recommendations.

In this paper, we address this problem by proposing a method, that is based on automatic analysis of the video content in order to extract a number representative low-level visual features. Such features are then used to generate personalized content-based recommendations. Our evaluation shows that our proposed method can outperform the baselines, by producing more relevant recommendations. Hence, a set low-level features extracted automatically can be more descriptive and informative of the video content than a set of high-level expert annotated features.

Keywords

Recommender systems Content based Low level Video 

Notes

Acknowledgments

This work is supported by Telecom Italia S.p.A., Open Innovation Department, Joint Open Lab S-Cube, Milan.

References

  1. 1.
    Datasets – grouplens. http://grouplens.org/datasets/, Accessed: 01 May, 2015
  2. 2.
    Youtube. http://www.youtube.com. Accessed: 01 April, 2015
  3. 3.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRefGoogle Scholar
  4. 4.
    Ahn, J.-W., Brusilovsky, P., Grady, J., He, D., Syn, S.Y.: Open user profiles for adaptive news systems: help or harm? In: Proceedings of the 16th international conference on World Wide Web, pp. 11–20. ACM (2007)Google Scholar
  5. 5.
    Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)CrossRefGoogle Scholar
  6. 6.
    Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)CrossRefGoogle Scholar
  7. 7.
    Billsus, D., Pazzani, M.J.: User modeling for adaptive news access. User Model. User-Adap. Inter. 10(2–3), 147–180 (2000)CrossRefGoogle Scholar
  8. 8.
    Bogdanov, D., Herrera, P.: How much metadata do we need in music recommendation? a subjective evaluation using preference sets. In: ISMIR, pp. 97–102 (2011)Google Scholar
  9. 9.
    Bogdanov, D., Serrà, J., Wack, N., Herrera, P., Serra, X.: Unifying low-level and high-level music similarity measures. IEEE Trans. Multimedia 13(4), 687–701 (2011)CrossRefGoogle Scholar
  10. 10.
    Brezeale, D., Cook, D.J.: Automatic video classification: a survey of the literature. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(3), 416–430 (2008)CrossRefGoogle Scholar
  11. 11.
    Burke, R.: Hybrid recommender systems: Survey and experiments. User Model. User-Adap. Inter. 12(4), 331–370 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Cantador, I., Szomszor, M., Alani, H., Fernández, M., Castells, P.: Enriching ontological user profiles with tagging history for multi-domain recommendations (2008)Google Scholar
  13. 13.
    Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM Trans. Inf. Syst. (TOIS) 22(1), 143–177 (2004)CrossRefGoogle Scholar
  14. 14.
    Elahi, M., Ricci, F., Rubens, N.: Active learning strategies for rating elicitation in collaborative filtering: a system-wide perspective. ACM Trans. Intell. Syst. Technol. (TIST) 5(1), 13 (2013)Google Scholar
  15. 15.
    Horn, B.K., Schunck, B.G.: Determining optical flow. In: 1981 Technical Symposium East, pp. 319–331. International Society for Optics and Photonics (1981)Google Scholar
  16. 16.
    Hu, W., Xie, N., Li, L., Zeng, X., Maybank, S.: A survey on visual content-based video indexing and retrieval. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 41(6), 797–819 (2011)CrossRefGoogle Scholar
  17. 17.
    Knees, P., Pohle, T., Schedl, M., Widmer, G.: A music search engine built upon audio-based and web-based similarity measures. In: Proceedings of the 30th annual international ACM SIGIR conference on Research and Development in Information Retrieval, pp. 447–454. ACM (2007)Google Scholar
  18. 18.
    Lehinevych, T., Kokkinis-Ntrenis, N., Siantikos, G., Dogruöz, A.S., Giannakopoulos, T., Konstantopoulos, S.: Discovering similarities for content-based recommendation and browsing in multimedia collectionsGoogle Scholar
  19. 19.
    Lops, P., De Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Middleton, S.E., Shadbolt, N.R., De Roure, D.C.: Ontological user profiling in recommender systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 54–88 (2004)CrossRefGoogle Scholar
  21. 21.
    Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. In: Proceedings of the Fifth ACM Conference on Digital libraries, pp. 195–204. ACM (2000)Google Scholar
  22. 22.
    Pazzani, M.J., Billsus, D.: Content-based Recommendation Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  23. 23.
    Rasheed, Z., Shah, M.: Video categorization using semantics and semiotics. In: Rosenfeld, A., Doermann, D., DeMenthon, D. (eds.) Video Mining, pp. 185–217. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Rasheed, Z., Sheikh, Y., Shah, M.: On the use of computable features for film classification. IEEE Trans. Circ. Syst. Video Technol. 15(1), 52–64 (2005)CrossRefGoogle Scholar
  25. 25.
    Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 1–35. Springer Verlag, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 1–35. Springer Verlag, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Seyerlehner, K., Schedl, M., Pohle, T., Knees, P.: Using block-level features for genre classification, tag classification and music similarity estimation. Submission to Audio Music Similarity and Retrieval Task of MIREX 2010 (2010)Google Scholar
  28. 28.
    Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 4:2 (2009)CrossRefGoogle Scholar
  29. 29.
    Radu, V.: Application. In: Radu, V. (ed.) Stochastic Modeling of Thermal Fatigue Crack Growth. ACM, vol. 1, pp. 63–70. Springer, Heidelberg (2015) Google Scholar
  30. 30.
    Yang, B., Mei, T., Hua, X.-S., Yang, L., Yang, S.-Q., Li, M.: Online video recommendation based on multimodal fusion and relevance feedback. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 73–80. ACM (2007)Google Scholar
  31. 31.
    Zhao, X., Li, G., Wang, M., Yuan, J., Zha, Z.-J., Li, Z., Chua, T.-S.: Integrating rich information for video recommendation with multi-task rank aggregation. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 1521–1524. ACM (2011)Google Scholar
  32. 32.
    Zhou, H., Hermans, T., Karandikar, A.V., Rehg, J.M.: Movie genre classification via scene categorization. In: Proceedings of the International Conference on Multimedia, pp. 747–750. ACM (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yashar Deldjoo
    • 1
  • Mehdi Elahi
    • 1
  • Massimo Quadrana
    • 1
  • Paolo Cremonesi
    • 1
  1. 1.Politecnico di MilanoMilanItaly

Personalised recommendations