Locomotion-Induced Sounds and Sonations: Mechanisms, Communication Function, and Relationship with Behavior

Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 53)

Abstract

Motion-induced sound is an intrinsic byproduct of essentially all animal behavior. Locomotion-induced sounds that have evolved specialization for communication are termed sonations. The null hypothesis is that locomotion-induced sounds are noncommunicative (adventitious), produced by nonspecialized morphology, and are involuntary. A sound is a sonation if it is produced by specialized morphology, or is produced voluntarily. The production of locomotion-induced sound can be examined at two levels: the animal motions (kinematics) that lead to sound production and the physical acoustic mechanism(s) that generate(s) the sound itself. The physical acoustics of locomotion induced sound are diverse, with both aerodynamic and structural mechanisms, including aeroelastic flutter, percussion, stridulation, and presumably many other undescribed mechanisms. There is a direct sound–motion correspondence between aspects of an animal’s motions and ensuing locomotion-induced sounds, especially in the time domain. This correspondence has two implications. One is experimental: sound recordings are a useful and perhaps underutilized source of data about animal locomotion. The second is behavioral: locomotion-induced sounds intrinsically contain information about an animal’s motions (such as wingbeat frequencies) that may be of interest to other animals. Therefore, locomotion-induced sounds are intrinsically suited to be mechanisms by which animals directly evaluate the locomotor performance of other animals, such as during courtship. The sound–motion correspondence is also a constraint. Sonations seem less acoustically diverse than vocalizations. Because they require discrete behaviors to be produced, animals also have somewhat fewer opportunities to produce sonations strategically, and few sonations are frequency-modulated. Sound production mechanisms of sonations are external to the animal and therefore are easy to manipulate experimentally on wild animals, making sonations an ideal, underutilized system for testing hypotheses about acoustic function.

Keywords

Adventitious Communication Flight Flutter Hummingbird Kinematics Manakin Mechanical sound Nonvocal Voluntariness Wing 

References

  1. Alben, S., & Shelley, M. J. (2008). Flapping states of a flag in an invicid fluid: Bistability and the transition to chaos. Physical Review Letters, 100, 074301.CrossRefPubMedGoogle Scholar
  2. Aldrich, E. C. (1939). Natural history of the Allen hummingbird (Selasphorus alleni). MA thesis, University of California, Berkeley, CA.Google Scholar
  3. Archibald, H. L. (1974). Directional differences in the sound intensity of Ruffed Grouse drumming. Auk, 91, 517–521.CrossRefGoogle Scholar
  4. Au, W. W. L., & Suthers, R. A. (2014). Production of biosonar signals: Structure and form. Springer Handbook of Auditory Research, 51, 61–105.CrossRefGoogle Scholar
  5. Bae, Y., & Moon, Y. J. (2008). Aerodynamic sound generation of flapping wing. Journal of the Acoustical Society of America, 124, 72–81.CrossRefPubMedGoogle Scholar
  6. Baptista, L. F. (2001). The song and dance of hummingbirds. California Wild, 54, 14–20.Google Scholar
  7. Baptista, L. F., & Matsui, M. (1979). The source of the dive-noise of the Anna’s hummingbird. Condor, 81, 87–89.CrossRefGoogle Scholar
  8. Barlow, C. (1967). Ethological units of behavior. In D. Ingle (Ed.), The central nervous system and fish behavior (pp. 217–232). Chicago: University of Chicago Press.Google Scholar
  9. Barrera, J. P., Chong, L., Judy, K. N., & Blumstein, D. T. (2011). Reliability of public information: Predators provide more information about risk than conspecifics. Animal Behaviour, 81, 779–787.CrossRefGoogle Scholar
  10. Barske, J., Fusani, L., Wikelski, M., Feng, N. Y., Santos, M., & Schlinger, B. A. (2014). Energetics of the acrobatic courtship in male golden-collared manakins (Manacus vitellinus). Proceedings of the Royal Society B: Biological Sciences, 281, 20132482. doi: 10.1098/rspb.2013.2482.CrossRefPubMedPubMedCentralGoogle Scholar
  11. BBC. (2011). Bizarre mammals filmed calling using their quills. Retrieved June 27, 2014, from http://news.bbc.co.uk/earth/hi/earth_news/newsid_9392000/9392070.stm.
  12. Bennet-Clark, H. C. (1999). Resonators in insect sound production: How insects produce loud pure-tone songs. Journal of Experimental Biology, 202, 3347–3357.PubMedGoogle Scholar
  13. Bhatt, M., & Bardolia, H. (2006). Call of Indian birds, Vol. 1 (CD). Nature Club Surat.Google Scholar
  14. Blake, W. K. (1986). Mechanics of flow-induced sound and vibration (Vol. 1). Orlando, FL: Academic.Google Scholar
  15. Bostwick, K. S. (2006). Mechanisms of feather sonation in Aves: Unanticipated levels of diversity. Acta Zoologica Sinica, 52S, 68–71.Google Scholar
  16. Bostwick, K., Elias, D. O., Mason, A. C., & Montealegre-Z, F. (2009). Resonating feathers produce courtship song. Proceedings of the Royal Society B: Biological Sciences, 227, 835–841.Google Scholar
  17. Bostwick, K. S., & Prum, R. O. (2003). High-speed video analysis of wing-snapping in two manakin clades (Pipridae: Aves). Journal of Experimental Biology, 206, 3693–3706.CrossRefPubMedGoogle Scholar
  18. Bostwick, K. S., & Prum, R. O. (2005). Courting bird sings with stridulating wing feathers. Science, 309, 736.CrossRefPubMedGoogle Scholar
  19. Bostwick, K., Riccio, M. L., & Humphries, J. M. (2012). Massive, solidified bone in the wing of a volant courting bird. Biology Letters, 8, 760–763.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bostwick, K., & Zyskowski, K. (2001). Mechanical sounds and sexual dimorphism in the crested doradito. Condor, 103, 861–865.CrossRefGoogle Scholar
  21. Bro-Jørgensen, J., & Dabelsteen, T. (2008). Knee-clicks and visual traits indicate fighting ability in eland antelopes, multiple messages and back-up signals. BMC Biology, 6, 47.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Byers, J., Hebets, E. A., & Podos, J. (2010). Female mate choice based upon male motor performance. Animal Behaviour, 79, 771–778.CrossRefGoogle Scholar
  23. Clark, C. J. (2008). Fluttering wing feathers produce the flight sounds of male streamertail hummingbirds. Biology Letters, 4, 341–344.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Clark, C. J. (2009). Courtship dives of Anna’s hummingbird offer insights into flight performance limits. Proceedings of the Royal Society B: Biological Sciences, 276, 3047–3052.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Clark, C. J. (2011). Wing, tail, and vocal contributions to the complex signals of a courting Calliope hummingbird. Current Zoology, 57, 187–196.CrossRefGoogle Scholar
  26. Clark, C. J. (2012). The role of power versus energy in courtship: What is the ‘energetic cost’ of a courtship display? Animal Behaviour, 84, 269–277.CrossRefGoogle Scholar
  27. Clark, C. J. (2014). Harmonic hopping, and both punctuated and gradual evolution of acoustic characters in Selasphorus hummingbird tail feathers. Plos One, 9, e93829.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Clark, C. J., Elias, D. O., Girard, M. B., & Prum, R. O. (2013a). Structural resonance and mode of flutter of hummingbird tail feathers. Journal of Experimental Biology, 216, 3404–3413.CrossRefPubMedGoogle Scholar
  29. Clark, C. J., Elias, D. O., & Prum, R. O. (2011). Aeroelastic flutter produces hummingbird feather songs. Science, 333, 1430–1433.CrossRefPubMedGoogle Scholar
  30. Clark, C. J., Elias, D. O., & Prum, R. O. (2013b). Hummingbird feather sounds are produced by aeroelastic flutter, not vortex-induced vibration. Journal of Experimental Biology, 216, 3395–3403.CrossRefPubMedGoogle Scholar
  31. Clark, C. J., & Feo, T. J. (2008). The Anna’s hummingbird chirps with its tail: A new mechanism of sonation in birds. Proceedings of the Royal Society of London B: Biological Sciences, 275, 955–962.CrossRefGoogle Scholar
  32. Clark, C. J., & Feo, T. J. (2010). Why do Calypte hummingbirds “sing” with both their tail and their syrinx? An apparent example of sexual sensory bias. American Naturalist, 175(1), 27–37.CrossRefPubMedGoogle Scholar
  33. Clark, C. J., Feo, T. J., & Bryan, K. B. (2012). Courtship displays and sonations of a male broad-tailed × black-chinned hummingbird hybrid. Condor, 114, 329–340.CrossRefGoogle Scholar
  34. Clark, C. J., Feo, T. J., & van Dongen, W. (2013c). Sounds and courtship displays of the Peruvian sheartail, Chilean woodstar, oasis hummingbird, and a hybrid male Peruvian sheartail × Chilean woodstar. Condor, 115, 560–577.CrossRefGoogle Scholar
  35. Clark, C. J., & Mitchell, D. E. (2013). Allen’s hummingbird (Selasphorus sasin). Birds of North America Online. http://bna.birds.cornell.edu/bna/species/501/articles/introduction
  36. Darwin, C. (1871). The descent of man, and selection in relation to sex. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  37. Delacour, J., & Amadon, D. (1973). Curassows and related birds (2nd ed.). New York: The American Museum of Natural History.Google Scholar
  38. Endo, H., Koyabu, D., Kimura, J., Rakotondraparany, F., Matsui, A., Yonezawa, T., et al. (2010). A quill vibrating mechanism for a sounding apparatus in the streaked tenrec (Hemicentetes semispinosus). Zoological Science, 27(5), 427–432.CrossRefPubMedGoogle Scholar
  39. Ewing, A. W. (1989). Arthropod bioacoustics neurobiology and behaviour. Ithaca, NY: Cornell University Press.Google Scholar
  40. Feo, T. J., & Clark, C. J. (2010). The displays and sonations of the black-chinned hummingbird (Trochilidae: Archilochus alexandri). Auk, 127, 787–796.CrossRefGoogle Scholar
  41. Fletcher, N. H. (1992). Acoustic systems in biology. New York: Oxford University Press.Google Scholar
  42. Fletcher, N. (2013). Shock waves and the sound of hand-clap—a simple model. Acoustics Australia, 41, 165–168.Google Scholar
  43. Fletcher, N. H., & Rossing, T. D. (1998). The physics of musical instruments. New York: Springer.CrossRefGoogle Scholar
  44. Fournier, J. P., Dawson, J. W., Mikhail, A., & Yack, J. E. (2013). If a bird flies in the forest, does an insect hear it? Biology Letters, 9, 20130319. doi: 10.1098/rsbl.2013.0319.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Friedmann, H. (1955). The honey-guides. United States National Museum Bulletin, 208, 1–292.CrossRefGoogle Scholar
  46. Garcia, M., Charrier, I., Rendall, D., & Iwaniuk, A. N. (2012a). Temporal and spectral analyses reveal individual variation in a non-vocal acoustic display: The drumming display of the ruffed grouse (Bonasa umbellus, L.). Ethology, 118, 292–301.CrossRefGoogle Scholar
  47. Garcia, M., Charrier, I., & Iwaniuk, A. N. (2012b). Directionality of the drumming display of the ruffed grouse. Condor, 114, 500–506.CrossRefGoogle Scholar
  48. Geyer, T., Sarradj, E., & Fritzsche, C. (2013). Silent owl flight: Comparative acoustic wind tunnel measurements on prepared wings. Acta Acustica United with Acustica, 99, 139–153.CrossRefGoogle Scholar
  49. Hingee, M., & Magrath, R. D. (2009). Flights of fear: A mechanical wing whistle sounds the alarm in a flocking bird. Proceedings of the Royal Society B: Biological Sciences, 276, 4173–4179.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hunter, T. A. (2008). On the role of wing sounds in hummingbird communication. Auk, 125, 532–541.CrossRefGoogle Scholar
  51. Hunter, T. A., & Picman, J. (2005). Characteristics of the wing sounds of four hummingbird species that breed in Canada. Condor, 107, 570–582.CrossRefGoogle Scholar
  52. Kingston, T., & Rossiter, S. J. (2004). Harmonic-hopping in Wallacea’s bats. Nature, 429, 654–657.CrossRefPubMedGoogle Scholar
  53. Koch, R. E., Krakauer, A. H., & Patricelli, G. L. (2015). Investigating female mate choice for mechanical sounds in the male greater sage-grouse. Auk: Ornithological Advances, 132, 349–358.CrossRefGoogle Scholar
  54. Konishi, M. (1973). How the owl tracks its prey. American Scientist, 61, 414–424.Google Scholar
  55. Kroeger, R. A., Gruschka, H. D., Helvey, T. C., et al. (1972). Low speed aerodynamics for ultra-quiet flight (pp. 1–155). Air Force Flight Dynamics Lab, Wright-Patterson Air Force Base, OH.Google Scholar
  56. Lane, D. F., Servat, G. P., Valqui, H. T., & Lambert, F. R. (2007). A distinctive new species of tyrant flycatcher (Passeriformes: tyrannidae: Cnipodectes) from southeastern Peru. Auk, 124, 762–772.CrossRefGoogle Scholar
  57. Lentink, D., Haselsteiner, A. F., & Ingersoll, R. (2015). In vivo recording of aerodynamic force with an aerodynamic force platform: From drones to birds. Journal of the Royal Society Interface, 12, 20141283.CrossRefPubMedCentralGoogle Scholar
  58. Lighthill, M. J. (1952). On sounds generated aerodynamically. I. General theory. Proceedings of the Royal Society of London A: Mathematical and Physical Sciences, 211, 564–587.CrossRefGoogle Scholar
  59. Manson-Bahr, P. H., & Pye, J. D. (1985). Mechanical sounds. In B. Campbell & E. Lack (Eds.), A dictionary of birds. Vermillion, SD: Buteo Books.Google Scholar
  60. Miller, S. J., & Inouye, D. W. (1983). Roles of the wing whistle in the territorial behavior of male broad-tailed hummingbirds (Selasphorus platycercus). Animal Behaviour, 31, 689–700.CrossRefGoogle Scholar
  61. Miskelly, C. M. (1990). Aerial displaying and flying ability of Chatham Island snipe Coenocorypha pusilla and New Zealand snipe C. aucklandica. Emu, 90, 28–32.CrossRefGoogle Scholar
  62. Miskelly, C. M. (2005). Evidence for ‘hakawai’ aerial displaying by Snares Island snipe (Coenocorypha aucklandica huegeli). Notornis, 52, 163–165.Google Scholar
  63. Mitchell, D. E. (2000). Allen’s hummingbird. In The birds of North America, No. 501. Vermillion, SD: Buteo Books.Google Scholar
  64. Myhrvold, N. P., & Currie, P. J. (1997). Supersonic sauropods? Tail dynamics in the diplodocids. Paleobiology, 23, 393–409.Google Scholar
  65. Nelson, S. K., & Hamer, T. E. (1995). Nesting biology and behavior of the marbled murrelet. In C. J. Ralph (Ed.), Ecology and conservation of the marbled murrelet (pp. 57–68). Berkeley, CA: Pacific Southwest Research Station, USDA.Google Scholar
  66. Norberg, R. Å. (1991). The flappet lark Mirafra rufocinnamomea doubles its wingbeat rate to 24 hz in wing-clap flight display: A sexually selected feat. Journal of Experimental Biology, 159, 515–523.Google Scholar
  67. Ortiz-Crespo, F. I. (1980). Agonistic and foraging behavior of hummingbirds co-occurring in central coastal California. PhD thesis, University of California, Berkeley.Google Scholar
  68. Podos, J. (2001). Correlated evolution of morphology and vocal signal structure in Darwin’s finches. Nature, 409, 185–188.CrossRefPubMedGoogle Scholar
  69. Podos, J., Southall, J. A., & Rossi-Santos, M. R. (2004). Vocal mechanics in Darwin’s finches: Correlation of beak gape and song frequency. Journal of Experimental Biology, 207, 607–619.CrossRefPubMedGoogle Scholar
  70. Prum, R. O. (1993). Phylogeny, biogeography, and evolution of the broadbills (Eurylaimidae) and asities (Philepittidae) based on morphology. Auk, 110, 304–324.Google Scholar
  71. Prum, R. O. (1998). Sexual selection and the evolution of mechanical sound production in manakins (Aves: Pipridae). Animal Behaviour, 55, 977–994.CrossRefPubMedGoogle Scholar
  72. Prum, R. O. (2010). The Lande-Kirkpatrick mechanism is the null model of evolution by intersexual selection: Implications for meaning, honesty, and design in intersexual signals. Evolution, 64, 3085–3100.CrossRefPubMedGoogle Scholar
  73. Pytte, C. L., & Ficken, M. S. (1994). Aerial display sounds of the black-chinned hummingbird. Condor, 96, 1088–1091.CrossRefGoogle Scholar
  74. Randall, J. A. (2001). Evolution and function of drumming as communication in mammals. American Zoologist, 41, 1143–1156.Google Scholar
  75. Reddig, V. E. (1978). Der ausdrucksflug der Bekassine (Capella gallinago gallinago). Journal für Ornithologie, 119, 357–387.CrossRefGoogle Scholar
  76. Richardson, M. H. (1997). Is it a mode shape, or an operating deflection shape? Sound and Vibration Magazine, 31(1), 54–61.Google Scholar
  77. Riede, T., Suthers, R. A., Fletcher, N. H., & Blevins, W. E. (2006). Songbirds tune their vocal tract to the fundamental frequency of their song. Proceedings of the National Academy of Sciences of the U S A, 103(14), 5543–5548.CrossRefGoogle Scholar
  78. Robillard, T., Montealegre-Z, F., desutter-Grandcolas, L., Grandcolas, P., & Robert, D. (2013). Mechanisms of high-frequency song generation in brachypterous crickets and the role of ghost frequencies. Journal of Experimental Biology, 216, 2001–2011.CrossRefPubMedGoogle Scholar
  79. Rodgers, T. L. (1940). The dive note of the Anna hummingbird. Condor, 42, 86.CrossRefGoogle Scholar
  80. Rusch, D. H., Destefano, M. C. R., & Lauten, D. (Eds.). (2000). Ruffed grouse (Bonasa umbellus) (Vol. 515). Ithaca, NY: Cornell Laboratory of Ornithology.Google Scholar
  81. Sarradj, E., Fritzsche, C., & Geyer, T. (2011). Silent owl flight: Bird flyover noise measurements. AIAA Journal, 49, 769–779.CrossRefGoogle Scholar
  82. Schultz, J. S., Hertel, F., Bauch, M., & Schlinger, B. A. (2001). Adaptations for rapid and forceful contraction in wing muscles of the male golden-collared manakin: Sex and species comparisons. Journal of Comparative Physiology A, 187, 677–684.CrossRefGoogle Scholar
  83. Stark, R. D., Dodenhoff, D. J., & Johnson, E. V. (1998). A quantitative analysis of woodpecker drumming. Condor, 100(2), 350–356.CrossRefGoogle Scholar
  84. Sueur, J., Tuck, E. J., & Robert, D. (2005). Sound radiation around a flying fly. Journal of the Acoustical Society of America, 118, 530–538.CrossRefPubMedGoogle Scholar
  85. Trail, P. W., & Donahue, P. (1991). Notes on the behavior and evology of the red-cotingas (Cotingidae: Phoenicircus). Wilson Bulletin, 103, 539–551.Google Scholar
  86. Tuck, L. (1972). The snipes: A study of the genus Capella. Ottawa, Canada: Canadian Wildlife Service.Google Scholar
  87. Unsworth, A., Dowson, D., & Wright, V. (1971). ‘Cracking joints’: A bioengineering study of cavitation in the metacarpophalangeal joint. Annals of the Rheumatic Diseases, 30, 348–358.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Vogel, S. (1994). Life in moving fluids. Princeton, NJ: Princeton University Press.Google Scholar
  89. Wilson, B., Batty, R. S., & Dill, L. M. (2003). Pacific and Atlantic herring produce burst pulse sounds. Proceedings of the Royal Society B: Biological Sciences, 271, S95–S97.CrossRefGoogle Scholar
  90. Wilson, T. A., Beavers, G. S., DeCoster, M. A., Holger, D. K., & Regenfuss, M. D. (1971). Experiments on the fluid mechanics of whistling. Journal of the Acoustical Society of America, 50, 366–372.CrossRefGoogle Scholar
  91. Zeigler, H. P., & Marler, P. (2012). Neuroscience of birdsong. Cambridge, England: Cambridge University Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of BiologyUniversity of California, RiversideRiversideUSA

Personalised recommendations