Advertisement

Vocal Sound Production and Acoustic Communication in Amphibians and Reptiles

  • Kaitlen C. Colafrancesco
  • Marcos Gridi-PappEmail author
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 53)

Abstract

Most amphibians and reptiles produce sounds with a larynx containing a pair of vocal cords. Clicking and hissing are common in both groups whereas tonal sounds are found most frequently in anurans and geckos. Calls can exceed 90 dB SPL at a distance of 1 m and they can have fundamental frequencies above 20 kHz. Calling is used mostly by males for courtship and territorial displays. Offspring and females call to synchronize hatching and to mediate maternal care. Adults and juveniles in many groups produce hissing when threatened. Amphibians and reptiles include more than 17,000 species. As a result of this diversity, major advances in the field of vocalization are made through exploratory research but also through careful experimentation and the use of novel technologies. Combining the study of vocal and auditory systems is important to explain issues such as the diversity of frequency tuning in the group. Many questions can also be answered through comparative studies in amphibians and reptiles because these groups have evolved independent solutions to common communication problems.

Keywords

Amplitude modulation Bellow Call Crocodile Frequency modulation Frog Gecko Hiss Larynx Nonlinearity Toad Turtle Ultrasound Vocal cord Vocal sac 

Notes

Acknowledgments

The authors thank Cristina O. Gridi-Papp and the editors for reviewing the manuscript.

References

  1. Arch, V. S., Grafe, T. U., Gridi-Papp, M., & Narins, P. M. (2009). Pure ultrasonic communication in an endemic Bornean frog. PLoS One, 4(4), e5413.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Arch, V. S., Grafe, T. U., & Narins, P. M. (2008). Ultrasonic signaling by a Bornean frog. Biology Letters, 4(1), 19–22.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bailey, W. J., & Roberts, J. D. (1981). The bioacoustics of the burrowing frog Heleioporus (Leptodactylidae). Journal of Natural History, 15(4), 693–702.CrossRefGoogle Scholar
  4. Bernal, X. E., Page, R. A., Rand, A. S., & Ryan, M. J. (2007). Cues for eavesdroppers: Do frog calls indicate prey density and quality? The American Naturalist, 169(3), 409–415.PubMedCrossRefGoogle Scholar
  5. Bernal, X. E., Rand, A. S., & Ryan, M. J. (2006). Acoustic preferences and localization performance of blood-sucking flies (Corethrella Coquillett) to túngara frog calls. Behavioral Ecology, 17(5), 709–715.CrossRefGoogle Scholar
  6. Bernal, X. E., Rand, A. S., & Ryan, M. J. (2009). Task differences confound sex differences in receiver permissiveness in túngara frogs. Proceedings of the Royal Society B: Biological Sciences, 276(1660), 1323–1329.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Blair, W. F. (1974). Character displacement in frogs. American Zoologist, 14(4), 1119–1125.CrossRefGoogle Scholar
  8. Bogert, C. M. (1953). Body temperatures of the tuatara under natural conditions. Zoologica, 38(4), 63–64.Google Scholar
  9. Boonman, A., & Kurniati, H. (2011). Evolution of high-frequency communication in frogs. Evolutionary Ecology Research, 13(2), 197–207.Google Scholar
  10. Britton, A. R. C. (2001). Review and classification of call types of juvenile crocodilians and factors affecting distress calls. In G. C. Grigg, F. Seebacher, & C. E. Franklin (Eds.), Crocodilian biology and evolution (pp. 364–377). Chipping Norton, England: Surrey Beatty & Sons.Google Scholar
  11. Brodie, E. D. (1978). Biting and vocalization as antipredator mechanisms in terrestrial salamanders. Copeia, 1978(1), 127–129.CrossRefGoogle Scholar
  12. Bucher, T. L., Ryan, M. J., & Bartholomew, G. A. (1982). Oxygen consumption during resting, calling, and nest building in the frog Physalaemus pustulosus. Physiological Zoology, 55(1), 10–22.CrossRefGoogle Scholar
  13. Cai, H.-X., Che, J., Pang, J.-F., Zhao, E.-M., & Zhang, Y.-P. (2007). Paraphyly of Chinese Amolops (Anura, Ranidae) and phylogenetic position of the rare Chinese frog, Amolops tormotus. Zootaxa, 1531, 49–55.Google Scholar
  14. Campbell, H. W., & Evans, W. E. (1972). Observations on the vocal behavior of chelonians. Herpetologica, 28, 277–280.Google Scholar
  15. Capranica, R. R., & Moffat, A. J. M. (1983). Neurobehavioral correlates of sound communication in anurans. In J.-P. Ewert, R. R. Capranica, & D. J. Ingle (Eds.), Advances in vertebrate neuroethology (pp. 710–730). New York: Plenum Press.Google Scholar
  16. Castellano, S., & Giacoma, C. (1998). Stabilizing and directional female choice for male calls in the European green toad. Animal Behaviour, 56(2), 275–287.PubMedCrossRefGoogle Scholar
  17. Chung, S. H., Pettigrew, A., & Anson, M. (1978). Dynamics of the amphibian middle ear. Nature, 272(5649), 142–147.PubMedCrossRefGoogle Scholar
  18. Cree, A. (1994). Low annual reproductive output in female reptiles from New Zealand. New Zealand Journal of Zoology, 21(4), 351–372.CrossRefGoogle Scholar
  19. Dawson, B., & Ryan, M. J. (2009). Early experience leads to changes in the advertisement calls of male Physalaemus pustulosus. Copeia, 2009(2), 221–226.CrossRefGoogle Scholar
  20. Dawson, B., & Ryan, M. J. (2012). Female preferences are not altered by early acoustic experience in the neotropical frog Physalaemus pustulosus. Journal of Herpetology, 46(4), 535–538.CrossRefGoogle Scholar
  21. De Jongh, H. J., & Gans, C. (1969). On the mechanism of respiration in the bullfrog, Rana catesbeiana: A reassessment. Journal of Morphology, 127(3), 259–289.CrossRefGoogle Scholar
  22. Drewry, G. E., Heyer, W. R., & Rand, A. S. (1982). A functional analysis of the complex call of the frog Physalaemus pustulosus. Copeia, 1982(3), 636–645.CrossRefGoogle Scholar
  23. Dudley, R., & Rand, A. S. (1991). Sound production and vocal sac inflation in the túngara frog, Physalaemus pustulosus (Leptodactylidae). Copeia, 1991(2), 460–470.CrossRefGoogle Scholar
  24. Duellman, W. E., & Trueb, L. (1986). Biology of amphibians. Baltimore: Johns Hopkins University Press.Google Scholar
  25. Eichelberg, H., & Obert, H.-J. (1976). Fat and glycogen utilization in the larynx muscles of fire-bellied toads (Bombina bombina L.) during calling activity. Cell and Tissue Research, 167(1), 1–10.PubMedCrossRefGoogle Scholar
  26. Emerson, S. B., Greig, A., Carroll, L., & Prins, G. S. (1999). Androgen receptors in two androgen-mediated, sexually dimorphic characters of frogs. General and Comparative Endocrinology, 114(2), 173–180.PubMedCrossRefGoogle Scholar
  27. Feder, M. E., & Burggren, W. W. (1992). Environmental physiology of the amphibians. Chicago: University of Chicago Press.Google Scholar
  28. Fee, M. S., Shraiman, B., Pesaran, B., & Mitra, P. P. (1998). The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird. Nature, 395(6697), 67–71.PubMedCrossRefGoogle Scholar
  29. Feng, A., & Narins, P. (2008). Ultrasonic communication in concave-eared torrent frogs (Amolops tormotus). Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 194(2), 159–167.PubMedCrossRefGoogle Scholar
  30. Feng, A., Narins, P., & Xu, C.-H. (2002). Vocal acrobatics in a Chinese frog, Amolops tormotus. Naturwissenschaften, 89(8), 352–356.PubMedCrossRefGoogle Scholar
  31. Feng, A. S., Narins, P. M., Xu, C.-H., Lin, W.-Y., Yu, Z.-L., Qiu, Q., et al. (2006). Ultrasonic communication in frogs. Nature, 440(7082), 333–336.PubMedCrossRefGoogle Scholar
  32. Feng, A. S., Riede, T., Arch, V. S., Yu, Z., Xu, Z.-M., Yu, X.-J., et al. (2009). Diversity of the vocal signals of concave-eared torrent frogs (Odorrana tormota): Evidence for individual signatures. Ethology, 115(11), 1015–1028.CrossRefGoogle Scholar
  33. Ferrara, C. R., Vogt, R. C., Giles, J. C., & Kuchling, G. (2014a). Chelonian vocal communication. In G. Witzany (Ed.), Biocommunication of animals (pp. 261–274). New York: Springer.CrossRefGoogle Scholar
  34. Ferrara, C. R., Vogt, R. C., & Sousa-Lima, R. S. (2013). Turtle vocalizations as the first evidence of posthatching parental care in chelonians. Journal of Comparative Psychology, 127(1), 24.PubMedCrossRefGoogle Scholar
  35. Ferrara, C. R., Vogt, R. C., Sousa-Lima, R. S., Tardio, B. M., & Bernardes, V. C. D. (2014b). Sound communication and social behavior in an Amazonian river turtle (Podocnemis expansa). Herpetologica, 70(2), 149–156.CrossRefGoogle Scholar
  36. Fischer, L. M., & Kelley, D. B. (1991). Androgen receptor expression and sexual differentiation of effectors for courtship song in Xenopus laevis. Seminars in Neuroscience, 3(6), 469–480.CrossRefGoogle Scholar
  37. Fitch, W. T., Neubauer, J., & Herzel, H. (2002). Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production. Animal Behaviour, 63(3), 407–418.CrossRefGoogle Scholar
  38. Frankenberg, E. (1982). Vocal behavior of the Mediterranean house gecko, Hemidactylus turcicus. Copeia, 1982, 770–775.CrossRefGoogle Scholar
  39. Frost, D. R. (2014). Amphibian species of the world: An online reference. New York: American Museum of Natural History. Retrieved May 8, 2015, from http://research.amnh.org/herpetology/amphibia/index.html.
  40. Galeotti, P., Sacchi, R., Fasola, M., & Ballasina, D. (2005). Do mounting vocalizations in tortoises have a communication function? A comparative analysis. Herpetological Journal, 15(2), 61–71.Google Scholar
  41. Gans, C., Gillingham, J. C., & Clark, D. L. (1984). Courtship, mating and male combat in tuatara, Sphenodon punctatus. Journal of Herpetology, 18(2), 194–197.CrossRefGoogle Scholar
  42. Gans, C., & Maderson, P. F. A. (1973). Sound producing mechanisms in recent reptiles: Review and comment. American Zoologist, 13(4), 1195–1203.CrossRefGoogle Scholar
  43. Garrick, L. D., Lang, J. W., & Herzog, H. A. (1978). Social signals of adult American alligators. Bulletin of the AMNH, 160, 155–192.Google Scholar
  44. Gaupp, E., & Ecker, A. (1904). A. Ecker’s und R. Wiedersheim’s anatomie des frosches. Braunschweig, Germany: Vieweg.Google Scholar
  45. Gerhardt, H. C. (1975). Sound pressure levels and radiation patterns of the vocalizations of some North American frogs and toads. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 102(1), 1–12.CrossRefGoogle Scholar
  46. Gerhardt, H. C. (1988). Acoustic properties used in call recognition by frogs and toads. In B. Fritzsch, M. J. Ryan, W. Wilczynski, T. E. Hetherington, & W. Walkowiak (Eds.), The evolution of the amphibian auditory system (pp. 455–483). New York: Wiley.Google Scholar
  47. Gerhardt, H. C., & Huber, F. (2002). Acoustic communication in insects and anurans. Chicago: University of Chicago Press.Google Scholar
  48. Giaretta, A. A., Vo, P., Herche, J., Tang, J., & Gridi-Papp, M. (2015). Reinterpreting features of the advertisement call of Dermatonotus muelleri (Boettger, 1885; Anura, Microhylidae). Zootaxa, 3972(4), 595–598.PubMedCrossRefGoogle Scholar
  49. Giles, J. C., Davis, J. A., McCauley, R. D., & Kuchling, G. (2009). Voice of the turtle: The underwater acoustic repertoire of the long-necked freshwater turtle, Chelodina oblonga. Journal of the Acoustical Society of America, 126(1), 434–443.PubMedCrossRefGoogle Scholar
  50. Girgenrath, M., & Marsh, R. L. (1997). In vivo performance of trunk muscles in tree frogs during calling. Journal of Experimental Biology, 200(24), 3101–3108.PubMedGoogle Scholar
  51. Girgenrath, M., & Marsh, R. L. (1999). Power output of sound-producing muscles in the tree frogs Hyla versicolor and Hyla chrysoscelis. Journal of Experimental Biology, 202(22), 3225–3237.PubMedGoogle Scholar
  52. Girgenrath, M., & Marsh, R. L. (2003). Season and testosterone affect contractile properties of fast calling muscles in the gray tree frog Hyla chrysoscelis. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 284(6), 1513–1520.CrossRefGoogle Scholar
  53. Goller, F., & Daley, M. A. (2001). Novel motor gestures for phonation during inspiration enhance the acoustic complexity of birdsong. Proceedings of the Royal Society of London, Series B: Biological Sciences, 268(1483), 2301–2305.CrossRefGoogle Scholar
  54. Grafe, T. U., & Thein, J. (2001). Energetics of calling and metabolic substrate use during prolonged exercise in the European treefrog Hyla arborea. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 171(1), 69–76.PubMedCrossRefGoogle Scholar
  55. Greenfield, M. D. (1994). Synchronous and alternating choruses in insects and anurans: Common mechanisms and diverse functions. American Zoologist, 34(6), 605–615.CrossRefGoogle Scholar
  56. Gridi-Papp, M. (2008). The structure of vocal sounds produced with the mouth closed or with the mouth open in treefrogs. Journal of the Acoustical Society of America, 123(5), 2895–2902.PubMedCrossRefGoogle Scholar
  57. Gridi-Papp, M. (2014). Is the frequency content of the calls in North American treefrogs limited by their larynges? International Journal of Evolutionary Biology, 2014, e198069.CrossRefGoogle Scholar
  58. Gridi-Papp, M., Feng, A. S., Shen, J.-X., Yu, Z.-L., Rosowski, J. J., & Narins, P. M. (2008). Active control of ultrasonic hearing in frogs. Proceedings of the National Academy of Sciences of the U S A, 105(31), 11014–11019.CrossRefGoogle Scholar
  59. Gridi-Papp, M., Rand, A. S., & Ryan, M. J. (2006). Animal communication: Complex call production in the túngara frog. Nature, 441(7089), 38.PubMedCrossRefGoogle Scholar
  60. Haddad, C. F., & Giaretta, A. A. (1999). Visual and acoustic communication in the Brazilian torrent frog, Hylodes asper (Anura: Leptodactylidae). Herpetologica, 55(3), 324–333.Google Scholar
  61. Halfwerk, W., Dixon, M. M., Ottens, K. J., Taylor, R. C., Ryan, M. J., Page, R. A., et al. (2014a). Risks of multimodal signaling: bat predators attend to dynamic motion in frog sexual displays. The Journal of Experimental Biology, 217(17), 3038–3044.PubMedCrossRefGoogle Scholar
  62. Halfwerk, W., Jones, P. L., Taylor, R. C., Ryan, M. J., & Page, R. A. (2014b). Risky ripples allow bats and frogs to eavesdrop on a multisensory sexual display. Science, 343(6169), 413–416.PubMedCrossRefGoogle Scholar
  63. Hartley, R. S., & Suthers, R. A. (1989). Airflow and pressure during canary song: Direct evidence for mini-breaths. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 165(1), 15–26.CrossRefGoogle Scholar
  64. Hartmann, M. T., Giasson, L. O. M., Hartmann, P. A., & Haddad, C. F. B. (2005). Visual communication in Brazilian species of anurans from the Atlantic forest. Journal of Natural History, 39(19), 1675–1685.CrossRefGoogle Scholar
  65. Hetherington, T. E. (1985). Role of the opercularis muscle in seismic sensitivity in the bullfrog, Rana catesbeiana. Journal of Experimental Zoology, 235(1), 27–34.PubMedCrossRefGoogle Scholar
  66. Hetherington, T. E. (1987). Physiological features of the opercularis muscle and their effects on vibration sensitivity in the bullfrog Rana catesbeiana. Journal of Experimental Biology, 131(1), 189–204.PubMedGoogle Scholar
  67. Hetherington, T. E. (1994). The middle ear muscle of frogs does not modulate tympanic responses to sound. Journal of the Acoustical Society of America, 95(4), 2122–2125.PubMedCrossRefGoogle Scholar
  68. Hetherington, T. E., & Lombard, R. E. (1983). Electromyography of the opercularis muscle of Rana catesbeiana: An amphibian tonic muscle. Journal of Morphology, 175(1), 17–26.PubMedCrossRefGoogle Scholar
  69. Hibbitts, T. J., Whiting, M. J., & Stuart-Fox, D. M. (2007). Shouting the odds: vocalization signals status in a lizard. Behavioral Ecology and Sociobiology, 61(8), 1169–1176.CrossRefGoogle Scholar
  70. Hödl, W. (1992). Reproductive behaviour in the neotropical foam-nesting frog Pleurodema diplolistris (Leptodactylidae). Amphibia-Reptilia, 13(3), 263–274.CrossRefGoogle Scholar
  71. Hödl, W., & Gollmann, G. (1986). Distress calls in neotropical frogs. Amphibia-Reptilia, 7(1), 11–21.CrossRefGoogle Scholar
  72. Hoskin, C. J., James, S., & Grigg, G. C. (2009). Ecology and taxonomy-driven deviations in the frog call–body size relationship across the diverse Australian frog fauna. Journal of Zoology, 278(1), 36–41.CrossRefGoogle Scholar
  73. Hughes, G. M., & Vergara, G. A. (1978). Static pressure-volume curves for the lung of the frog (Rana pipiens). Journal of Experimental Biology, 76(1), 149–165.PubMedGoogle Scholar
  74. Jaramillo, C., Rand, A. S., Ibáñez, R., & Dudley, R. (1997). Elastic structures in the vocalization apparatus of the túngara frog Physalaemus pustulosus (Leptodactylidae). Journal of Morphology, 233(3), 287–295.PubMedCrossRefGoogle Scholar
  75. Jenssen, T. A. (1972). Seasonal organ weights of the green frog, Rana clamitans (Anura, Ranidae), under natural conditions. Transactions of the Illinois State Academy of Science, 65, 15–24.Google Scholar
  76. Jørgensen, M. B., & Kanneworff, M. (1998). Middle ear transmission in the grass frog, Rana temporaria. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 182(1), 59–64.Google Scholar
  77. Kelley, D. B., & Tobias, M. L. (1999). Vocal communication in Xenopus laevis. In M. Hauser & M. Konishi (Eds.), Neural mechanisms of communication (pp. 9–35). Cambridge, MA: MIT Press.Google Scholar
  78. Kelley, D. B., Tobias, M. L., Horng, S., & Ryan, M. J. (2001). Producing and perceiving frog songs: Dissecting the neural bases for vocal behaviors in Xenopus laevis. In M. J. Ryan (Ed.), Anuran communication (pp. 156–166). Washington, DC: Smithsonian Institution Press.Google Scholar
  79. Kime, N. M., Ryan, M. J., & Wilson, P. S. (2013). A bond graph approach to modeling the anuran vocal production system. The Journal of the Acoustical Society of America, 133(6), 4133–4144.PubMedCrossRefGoogle Scholar
  80. Kirkpatrick, M., & Ryan, M. J. (1991). The evolution of mating preferences and the paradox of the lek. Nature, 350(6313), 33–38.CrossRefGoogle Scholar
  81. Lardner, B., & bin Lakim, M. (2002). Animal communication: Tree-hole frogs exploit resonance effects. Nature, 420(6915), 475.PubMedCrossRefGoogle Scholar
  82. Largen, M. J., Morris, P. A., & Yalden, D. W. (1972). Observations on the caecilian Geotrypetes grandisonae Taylor (Amphibia Gymnophiona) from Ethiopia. Monitore Zoologico Italiano. Supplemento, 4(1), 185–205.Google Scholar
  83. Lewis, E. R., & Narins, P. M. (1985). Do frogs communicate with seismic signals? Science, 227(4683), 187–189.PubMedCrossRefGoogle Scholar
  84. Lewis, E. R., Narins, P. M., Cortopassi, K. A., Yamada, W. M., Poinar, E. H., Moore, S. W., et al. (2001). Do male white-lipped frogs use seismic signals for intraspecific communication? American Zoologist, 41(5), 1185–1199.Google Scholar
  85. Littlejohn, M. J., & Ryan, M. J. (2001). Patterns of differentiation in temporal properties of acoustic signals of anurans. In M. J. Ryan (Ed.), Anuran communication (pp. 102–120). Washington, DC: Smithsonian Institution Press.Google Scholar
  86. Liu, C. C. (1935). Types of vocal sac in the Salientia. Proceedings of the Boston Society of Natural History, 41, 19–40.Google Scholar
  87. Loftus-Hills, J. J., & Littlejohn, M. J. (1992). Reinforcement and reproductive character displacement in Gastrophryne carolinensis and G. olivacea (Anura: Microhylidae): A reexamination. Evolution, 46(4), 896–906.CrossRefGoogle Scholar
  88. Manley, G. A., & Kraus, J. E. (2010). Exceptional high-frequency hearing and matched vocalizations in Australian pygopod geckos. Journal of Experimental Biology, 213(11), 1876–1885.PubMedCrossRefGoogle Scholar
  89. Martin, W. F. (1971). Mechanics of sound production in toads of the genus Bufo: Passive elements. Journal of Experimental Zoology, 176(3), 273–293.PubMedCrossRefGoogle Scholar
  90. Martin, W. F., & Gans, C. (1972). Muscular control of the vocal tract during release signaling in the toad Bufo valliceps. Journal of Morphology, 137(1), 1–27.PubMedCrossRefGoogle Scholar
  91. Mason, M. J., & Narins, P. M. (2002a). Vibrometric studies of the middle ear of the bullfrog Rana catesbeiana II. The operculum. Journal of Experimental Biology, 205(20), 3167–3176.PubMedGoogle Scholar
  92. Mason, M. J., & Narins, P. M. (2002b). Vibrometric studies of the middle ear of the bullfrog Rana catesbeiana I. The extrastapes. Journal of Experimental Biology, 205(20), 3153–3165.PubMedGoogle Scholar
  93. McAlister, W. H. (1961). The mechanics of sound production in North American Bufo. Copeia, 1961(1), 86–95.CrossRefGoogle Scholar
  94. Mitchell, N. J., Kearney, M. R., Nelson, N. J., & Porter, W. P. (2008). Predicting the fate of a living fossil: How will global warming affect sex determination and hatching phenology in tuatara? Proceedings of the Royal Society of London B: Biological Sciences, 275(1648), 2185–2193.CrossRefGoogle Scholar
  95. Moore, B. A., Russell, A. P., & Bauer, A. M. (1991). Structure of the larynx of the tokay gecko (Gekko gecko), with particular reference to the vocal cords and glottal lips. Journal of Morphology, 210(3), 227–238.CrossRefGoogle Scholar
  96. Nally, R. C. (1981). On the reproductive energetics of chorusing males: Energy depletion profiles, restoration and growth in two sympatric species of Ranidella (Anura). Oecologia, 51(2), 181–188.CrossRefGoogle Scholar
  97. Narins, P. M., Grabul, D. S., Soma, K. K., Gaucher, P., & Hödl, W. (2005). Cross-modal integration in a dart-poison frog. Proceedings of the National Academy of Sciences of the U S A, 102(7), 2425–2429.CrossRefGoogle Scholar
  98. Narins, P. M., Lewis, E. R., & McClelland, B. E. (2000). Hyperextended call note repertoire of the endemic Madagascar treefrog Boophis madagascariensis (Rhacophoridae). Journal of Zoology, 250(3), 283–298.CrossRefGoogle Scholar
  99. Neill, W. T. (1952). Remarks on salamander voices. Copeia, 1952, 195–196.CrossRefGoogle Scholar
  100. Nelson, N. J., Keall, S. N., Brown, D., & Daugherty, C. H. (2002). Establishing a new wild population of tuatara (Sphenodon guntheri). Conservation Biology, 16(4), 887–894.CrossRefGoogle Scholar
  101. Nelson, N. J., Thompson, M. B., Pledger, S., Keall, S. N., & Daugherty, C. H. (2004). Do TSD, sex ratios, and nest characteristics influence the vulnerability of tuatara to global warming? International Congress Series, 1275, 250–257.CrossRefGoogle Scholar
  102. Paulsen, K. (1965). Beitrage zur anatomie und physiologie des froschkehlkopfes (mit besonderer berucksichtigung der stimmbildung). Zeitschrift für Wissenschaftliche Zoologie, 172, 1–16.Google Scholar
  103. Paulsen, K. (1967). Das prinzip der stimmbildung in der wirbeltierreihe und beim menschen. Frankfurt, Germany: Akademische Verlagsgesellschaft.Google Scholar
  104. Pauly, G. B., Bernal, X. E., Rand, A. S., & Ryan, M. J. (2006). The vocal sac increases call rate in the túngara frog Physalaemus pustulosus. Physiological and Biochemical Zoology, 79(4), 708–719.PubMedCrossRefGoogle Scholar
  105. Penna, M. (2004). Amplification and spectral shifts of vocalizations inside burrows of the frog Eupsophus calcaratus (Leptodactylidae). Journal of the Acoustical Society of America, 116(2), 1254–1260.PubMedCrossRefGoogle Scholar
  106. Pfennig, K. S. (2007). Facultative mate choice drives adaptive hybridization. Science, 318(5852), 965–967.PubMedCrossRefGoogle Scholar
  107. Pfennig, K. S., & Simovich, M. A. (2002). Differential selection to avoid hybridization in two toad species. Evolution, 56(9), 1840–1848.PubMedCrossRefGoogle Scholar
  108. Preininger, D., Boeckle, M., Freudmann, A., Starnberger, I., Sztatecsny, M., & Hödl, W. (2013). Multimodal signaling in the small torrent frog (Micrixalus saxicola) in a complex acoustic environment. Behavioral Ecology and Sociobiology, 67(9), 1449–1456.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Purgue, A. P. (1995). The sound broadcasting system of the bullfrog. PhD thesis, University of Utah.Google Scholar
  110. Purgue, A. P. (1997). Tympanic sound radiation in the bullfrog Rana catesbeiana. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 181(5), 438–445.CrossRefGoogle Scholar
  111. Rand, A. S. (2001). A history of frog call studies 405 BC to 1980. In M. J. Ryan (Ed.), Anuran communication (pp. 8–19). Washington, DC: Smithsonian Institution Press.Google Scholar
  112. Rand, A. S., & Dudley, R. (1993). Frogs in helium: The anuran vocal sac is not a cavity resonator. Physiological Zoology, 66(5), 793–806.CrossRefGoogle Scholar
  113. Refsnider, J. M., Keall, S. N., Daugherty, C. H., & Nelson, N. J. (2009). Does nest-guarding in female tuatara (Sphenodon punctatus) reduce nest destruction by conspecific females? Journal of Herpetology, 43(2), 294–299.CrossRefGoogle Scholar
  114. Romer, A. S., & Parsons, T. S. (1986). The vertebrate body. New York: Saunders College.Google Scholar
  115. Rosenthal, G. G., Rand, A. S., & Ryan, M. J. (2004). The vocal sac as a visual cue in anuran communication: An experimental analysis using video playback. Animal Behaviour, 68(1), 55–58.CrossRefGoogle Scholar
  116. Russell, A. P., Rittenhouse, D. R., & Bauer, A. M. (2000). Laryngotracheal morphology of Afro-Madagascan geckos: A comparative survey. Journal of Morphology, 245(3), 241–268.PubMedCrossRefGoogle Scholar
  117. Ryan, M. J. (1980). Female mate choice in a neotropical frog. Science, 209(4455), 523–525.PubMedCrossRefGoogle Scholar
  118. Ryan, M. J. (1985). The túngara frog: A study in sexual selection and communication. Chicago: University of Chicago Press.Google Scholar
  119. Ryan, M. J. (2001). Anuran communication. Washington, DC: Smithsonian Institution Press.Google Scholar
  120. Ryan, M. J., Bartholomew, G. A., & Rand, A. S. (1983a). Energetics of reproduction in a neotropical frog, Physalaemus pustulosus. Ecology, 64(6), 1456–1462.CrossRefGoogle Scholar
  121. Ryan, M. J., & Drewes, R. C. (1990). Vocal morphology of the Physalaemus pustulosus species group (Leptodactylidae): Morphological response to sexual selection for complex calls. Biological Journal of the Linnean Society, 40(1), 37–52.CrossRefGoogle Scholar
  122. Ryan, M. J., Fox, J. H., Wilczynski, W., & Rand, A. S. (1990). Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature, 343, 66–67.PubMedCrossRefGoogle Scholar
  123. Ryan, M. J., & Rand, A. S. (1995). Female responses to ancestral advertisement calls in túngara frogs. Science, 269, 390–392.PubMedCrossRefGoogle Scholar
  124. Ryan, M. J., Tuttle, M. D., & Barclay, R. M. R. (1983b). Behavioral responses of the frog-eating bat, Trachops cirrhosus, to sonic frequencies. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 150(4), 413–418.CrossRefGoogle Scholar
  125. Sacchi, R., Galeotti, P., Fasola, M., & Gerzeli, G. (2004). Larynx morphology and sound production in three species of Testudinidae. Journal of Morphology, 261(2), 175–183.PubMedCrossRefGoogle Scholar
  126. Schmid, E. (1978). Contribution to the morphology and histology of the vocal cords of central European anurans (Amphibia). Zoologische Jahrbucher Anatomie, 5, 133–150.Google Scholar
  127. Schmidt, R. S. (1965). Larynx control and call production in frogs. Copeia, 1965(2), 143–147.CrossRefGoogle Scholar
  128. Schmidt, R. S. (1972). Action of intrinsic laryngeal muscles during release calling in leopard frog. Journal of Experimental Zoology, 181(2), 233–243.PubMedCrossRefGoogle Scholar
  129. Schneider, H. (1970). Morphologie des larynx von Hyla a. arborea (L.) und Hyla meridionalis Boettger (Amphibia, Anura). Zoomorphology, 66(4), 299–309.Google Scholar
  130. Schwartz, J. J., & Wells, K. D. (1985). Intra- and interspecific vocal behavior of the neotropical treefrog Hyla microcephala. Copeia, 1985(1), 27–38.CrossRefGoogle Scholar
  131. Shen, J.-X., Xu, Z.-M., Feng, A. S., & Narins, P. M. (2011). Large odorous frogs (Odorrana graminea) produce ultrasonic calls. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 197(10), 1027–1030.PubMedCrossRefGoogle Scholar
  132. Starnberger, I., Preininger, D., & Hödl, W. (2014). From uni-to multimodality: Towards an integrative view on anuran communication. Journal of Comparative Physiology A, 200(9), 777–787.CrossRefGoogle Scholar
  133. Strake, J., Luksch, H., & Walkowiak, W. (1994). Audio-motor interface in anurans. European Journal of Morphology, 32(2–4), 122–126.PubMedGoogle Scholar
  134. Stuart, B. L. (2008). The phylogenetic problem of Huia (Amphibia: Ranidae). Molecular Phylogenetics and Evolution, 46, 49–60.PubMedCrossRefGoogle Scholar
  135. Sullivan, B. K., & Wagner, W. E., Jr. (1988). Variation in advertisement and release calls, and social influences on calling behavior in the Gulf Coast toad (Bufo valliceps). Copeia, 1988, 1014–1020.CrossRefGoogle Scholar
  136. Suthers, R. A., Narins, P. M., Lin, W.-Y., Schnitzler, H.-U., Denzinger, A., Xu, C.-H., et al. (2006). Voices of the dead: Complex nonlinear vocal signals from the larynx of an ultrasonic frog. Journal of Experimental Biology, 209(24), 4984–4993.PubMedCrossRefGoogle Scholar
  137. Taigen, T., & Wells, K. (1985). Energetics of vocalization by an anuran amphibian (Hyla versicolor). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 155(2), 163–170.CrossRefGoogle Scholar
  138. Taylor, R. C., & Ryan, M. J. (2013). Interactions of multisensory components perceptually rescue túngara frog mating signals. Science, 341(6143), 273–274.PubMedCrossRefGoogle Scholar
  139. Thurow, G. R., & Gould, H. J. (1977). Sound production in a caecilian. Herpetologica, 33(2), 234–237.Google Scholar
  140. Tobias, M. L., Evans, B. J., & Kelley, D. B. (2011). Evolution of advertisement calls in African clawed frogs. Behaviour, 148(4), 519–549.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Tobias, M. L., Korsh, J., & Kelley, D. B. (2014). Evolution of male and female release calls in African clawed frogs. Behaviour, 151(9), 1313–1334.CrossRefGoogle Scholar
  142. Todd, N. P. M. (2007). Estimated source intensity and active space of the American alligator (Alligator mississippiensis) vocal display. The Journal of the Acoustical Society of America, 122(5), 2906–2915.PubMedCrossRefGoogle Scholar
  143. Towns, D. R., & Daugherty, C. H. (1994). Patterns of range contractions and extinctions in the New Zealand herpetofauna following human colonisation. New Zealand Journal of Zoology, 21(4), 325–339.CrossRefGoogle Scholar
  144. Trewavas, E. (1932). The hyoid and larynx of the Anura. Royal Society of London Philosophical Transactions Series B: Biological Sciences, 222, 401–527.CrossRefGoogle Scholar
  145. Uetz, P. (2014). The reptile database. Heidelberg, Germany: European Molecular Biology Laboratory. Retrieved May 8, 2015, from http://www.reptile-database.org.
  146. Vergne, A. L., Aubin, T., Martin, S., & Mathevon, N. (2012). Acoustic communication in crocodilians: Information encoding and species specificity of juvenile calls. Animal Cognition, 15(6), 1095–1109.PubMedCrossRefGoogle Scholar
  147. Vergne, A. L., & Mathevon, N. (2008). Crocodile egg sounds signal hatching time. Current Biology, 18(12), 513–514.CrossRefGoogle Scholar
  148. Vergne, A. L., Pritz, M. B., & Mathevon, N. (2009). Acoustic communication in crocodilians: From behaviour to brain. Biological Reviews, 84(3), 391–411.PubMedCrossRefGoogle Scholar
  149. Vitalis, T. Z., & Shelton, G. (1990). Breathing in Rana pipiens: The mechanism of ventilation. Journal of Experimental Biology, 154(1), 537–556.Google Scholar
  150. Vitt, L. J., & Caldwell, J. P. (2013). Herpetology: An introductory biology of amphibians and reptiles (4th ed.). Boston: Academic.Google Scholar
  151. Wagner, W. E., Jr. (1989). Graded aggressive signals in Blanchard’s cricket frog: vocal responses to opponent proximity and size. Animal Behaviour, 38(6), 1025–1038.CrossRefGoogle Scholar
  152. Wagner, W. E., Jr. (1992). Deceptive or honest signaling of fighting ability? A test of alternative hypotheses for the function of changes in call dominant frequency by male cricket frogs. Animal Behaviour, 44(3), 449–462.CrossRefGoogle Scholar
  153. Walkowiak, W. (1992). Acoustic communication in the fire-bellied toad: An integrative neurobiological approach. Ethology Ecology and Evolution, 4(1), 63–74.CrossRefGoogle Scholar
  154. Walkowiak, W. (2006). Call production and neural basis of vocalization. In P. M. Narins, A. S. Feng, R. R. Fay, & A. N. Popper (Eds.), Hearing and sound communication in amphibians (pp. 87–112). New York: Springer.CrossRefGoogle Scholar
  155. Wang, X., Wang, D., Wu, X., Wang, R., & Wang, C. (2007). Acoustic signals of Chinese alligators (Alligator sinensis): Social communication. The Journal of the Acoustical Society of America, 121(5), 2984–2989.PubMedCrossRefGoogle Scholar
  156. Weber, E. (1974). Comparative bio-acoustic investigations in the Discoglossus pictus, Otth 1837 and the Discoglossus sardus Tschudi 1837 (Discoglossidae, Anura). Zoologische Jahrbucher Physiologie, 78, 40–84.Google Scholar
  157. Weber, E., & Werner, Y. L. (1977). Vocalizations of two snake-lizards (Reptilia: Sauria: Pygopodidae). Herpetologica, 33(3), 353–363.Google Scholar
  158. Welch, A. M., Semlitsch, R. D., & Gerhardt, H. C. (1998). Call duration as an indicator of genetic quality in male gray tree frogs. Science, 280(5371), 1928–1930.PubMedCrossRefGoogle Scholar
  159. Wells, K. D. (1988). The effect of social interactions on anuran vocal behavior. In B. Fritzsch, W. Wilczynski, M. J. Ryan, T. Hetherington, & W. Walkowiak (Eds.), The evolution of the amphibian auditory system (pp. 9–18). New York: Wiley.Google Scholar
  160. Wells, K. D. (2010). The ecology and behavior of amphibians. Chicago: University of Chicago Press.Google Scholar
  161. Wells, K. D., & Taigen, T. L. (1984). Reproductive behavior and aerobic capacities of male American toads (Bufo americanus): Is behavior constrained by physiology? Herpetologica, 40(3), 292–298.Google Scholar
  162. Wilczynski, W., & Chu, J. (2001). Acoustic communication, endocrine control, and the neurochemical systems of the brain. In M. J. Ryan (Ed.), Anuran communication (pp. 23–35). Washington, DC: Smithsonian Institution Press.Google Scholar
  163. Wilder, H. H. (1896). Lungless salamanders. Anatomischer Anzeiger, 12, 182–192.Google Scholar
  164. Wogel, H., Abrunhosa, P. A., & Weber, L. N. (2004). The tadpole, vocalizations and visual displays of Hylodes nasus (Anura: Leptodactylidae). Amphibia-Reptilia, 25(2), 219–226.CrossRefGoogle Scholar
  165. Woolbright, L. L., & Stewart, M. M. (1987). Foraging success of the tropical frog, Eleutherodactylus coqui: The cost of calling. Copeia, 1987, 69–75.CrossRefGoogle Scholar
  166. Yager, D. D. (1992). A unique sound production mechanism in the pipid anuran Xenopus borealis. Zoological Journal of the Linnean Society, 104(4), 351–375.CrossRefGoogle Scholar
  167. Yager, D. D. (1996). Sound production and acoustic communication in Xenopus borealis. In R. C. Tinsley & H. R. Kobel (Eds.), The biology of Xenopus (pp. 121–141). Oxford, England: Clarendon.Google Scholar
  168. Yamaguchi, A., & Kelley, D. B. (2000). Generating sexually differentiated vocal patterns: Laryngeal nerve and EMG recordings from vocalizing male and female African clawed frogs (Xenopus laevis). The Journal of Neuroscience, 20(4), 1559–1567.PubMedGoogle Scholar
  169. Yang, E. J., & Kelley, D. B. (2008). Hormones and the regulation of vocal patterns in amphibians: Xenopus laevis vocalizations as a model system. In D. Pfaff, A. Arnold, A. Etgen, S. Fahrbach, & R. Rubin (Eds.), Hormones, brain, and behavior (pp. 693–706). New York: Academic.Google Scholar
  170. Young, B. A. (1991). Morphological basis of “growling” in the king cobra, Ophiophagus hannah. Journal of Experimental Zoology, 260(3), 275–287.PubMedCrossRefGoogle Scholar
  171. Young, B. A. (2000). The comparative morphology of the larynx in snakes. Acta Zoologica, 81(2), 177–193.CrossRefGoogle Scholar
  172. Young, B. A. (2003). Snake bioacoustics: Toward a richer understanding of the behavioral ecology of snakes. The Quarterly Review of Biology, 78(3), 303–325.PubMedCrossRefGoogle Scholar
  173. Young, B. A., Sheft, S., & Yost, W. (1995). Sound production in Pituophis melanoleucus (Serpentes: Colubridae) with the first description of a vocal cord in snakes. Journal of Experimental Zoology, 273(6), 472–481.PubMedCrossRefGoogle Scholar
  174. Yu, X., Peng, Y., Aowphol, A., Ding, L., Brauth, S. E., & Tang, Y.-Z. (2011). Geographic variation in the advertisement calls of Gekko gecko in relation to variations in morphological features: Implications for regional population differentiation. Ethology Ecology and Evolution, 23(3), 211–228.CrossRefGoogle Scholar
  175. Zornik, E., & Kelley, D. B. (2008). Regulation of respiratory and vocal motor pools in the isolated brain of Xenopus laevis. The Journal of Neuroscience, 28(3), 612–621.PubMedPubMedCentralCrossRefGoogle Scholar
  176. Zornik, E., & Yamaguchi, A. (2008). Sexually differentiated central pattern generators in Xenopus laevis. Trends in Neurosciences, 31(6), 296–302.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of the PacificStocktonUSA

Personalised recommendations