Skip to main content

Robust Autonomous Flight in Constrained and Visually Degraded Environments

  • Chapter
  • First Online:
Field and Service Robotics

Abstract

This paper addresses the problem of autonomous navigation of a micro aerial vehicle (MAV) inside a constrained shipboard environment for inspection and damage assessment, which might be perilous or inaccessible for humans especially in emergency scenarios. The environment is GPS-denied and visually degraded, containing narrow passageways, doorways and small objects protruding from the wall. This makes existing 2D LIDAR, vision or mechanical bumper-based autonomous navigation solutions fail. To realize autonomous navigation in such challenging environments, we propose a fast and robust state estimation algorithm that fuses estimates from a direct depth odometry method and a Monte Carlo localization algorithm with other sensor information in an EKF framework. Then, an online motion planning algorithm that combines trajectory optimization with receding horizon control framework is proposed for fast obstacle avoidance. All the computations are done in real-time onboard our customized MAV platform. We validate the system by running experiments in different environmental conditions. The results of over 10 runs show that our vehicle robustly navigates 20 m long corridors only 1 m wide and goes through a very narrow doorway (66 cm width, only 4 cm clearance on each side) completely autonomously even when it is completely dark or full of light smoke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grzonka, S., Grisetti, G., Burgard, W.: A fully autonomous indoor quadrotor. IEEE Trans. Robot. 28(1), 90–100 (2012)

    Article  Google Scholar 

  2. Dryanovski, I., Valenti, R.G., Xiao, J.: An open-source navigation system for micro aerial vehicles. Auton. Robots 34(3), 177–188 (2013)

    Article  Google Scholar 

  3. Shen, S., Michael, N., Kumar, V.: Autonomous multi-floor indoor navigation with a computationally constrained MAV. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 20–25. IEEE (2011)

    Google Scholar 

  4. Schauwecker, K., Zell, A.: On-board dual-stereo-vision for the navigation of an autonomous MAV. J. Intell. Robot. Syst. Theory Appl. 74, 1–16 (2014)

    Article  Google Scholar 

  5. Fraundorfer, F., Heng, L., Honegger, D.: Vision-based autonomous mapping and exploration using a quadrotor MAV. In: IEEE International Conference on Intelligent Robots and Systems, pp. 4557–4564 (2012)

    Google Scholar 

  6. Wu, A.D., Johnson, E.N., Kaess, M., et al.: Autonomous flight in GPS-denied environments using monocular vision and inertial sensors. J. Aerosp. Inf. Syst. 10, 172–186 (2013)

    Google Scholar 

  7. Scaramuzza, D., Achtelik, M., Doitsidis, L., et al.: Vision-controlled micro flying robots: from system design to autonomous navigation and mapping in GPS-denied environments, pp. 26–40 (2014)

    Google Scholar 

  8. Weiss, S., Scaramuzza, D., Siegwart, R.: Monocular-slam-based navigation for autonomous micro helicopters in GPS-denied environments. J. Field Robot. 28(6), 854–874 (2011)

    Article  Google Scholar 

  9. Flores, G., Zhou, S., Lozano, R., Castillo, P.: A vision and GPS-based real-time trajectory planning for a MAV in unknown and low-sunlight environments. J. Intell. Robot. Syst. 74(1–2), 59–67 (2014)

    Article  Google Scholar 

  10. Huang, A.S., Bachrach, A.: Visual odometry and mapping for autonomous flight using an RGB-D camera. Int. Symp. Robot. Res. 1–16 (2011)

    Google Scholar 

  11. Valenti, R.G., Dryanovski, I., Jaramillo, C.: Autonomous quadrotor flight using onboard RGB-D visual odometry. In: 2014 IEEE International Conference on Robotics and Automation, pp. 5233–5238. IEEE (2014)

    Google Scholar 

  12. Fang, Z., Scherer, S.: Real-time onboard 6DoF localization of an indoor MAV in degraded visual environments using a RGB-D camera. In: 2015 IEEE International Conference on Robotics and Automation, May 2015

    Google Scholar 

  13. Horn, B.K.P., Harris, J.G.: Rigid body motion from range image sequences. CVGIP Image Underst. 53(1), 1–13 (1991)

    Google Scholar 

  14. Pomerleau, F., Colas, F., Siegwart, R., Magnenat, S.: Comparing ICP variants on real-world data sets. Auton. Robots 34(3), 133–148 (2013)

    Article  Google Scholar 

  15. Callaghan, K., Chen, J.: Revisiting the collinear data problem: an assessment of estimator Ill-conditioning in linear regression. Pract. Assess. Res. Eval. 13(5), 5 (2008)

    Google Scholar 

  16. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press (2005)

    Google Scholar 

  17. Scherer, S., Rehder, J., Achar, S., et al.: River mapping from a flying robot: state estimation, river detection, and obstacle mapping. Auton. Robots 33(1–2), 189–214 (2012)

    Google Scholar 

  18. Green, C.J., Kelly, A.: Optimal sampling in the space of paths: Preliminary results (2006)

    Google Scholar 

  19. Ratliff, N., Zucker, M., Bagnell, J.A., et al.: Chomp: gradient optimization techniques for efficient motion planning. In: 2009 IEEE International Conference on Robotics and Automation, pp. 489–494 (2009)

    Google Scholar 

  20. Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2520–2525 (2011)

    Google Scholar 

  21. Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for quadrotor flight. In: International Conference on Robotics and Automation (2013)

    Google Scholar 

  22. Golub, G.H., Hansen, P.C., O’Leary, D.P.: Tikhonov regularization and total least squares. SIAM J. Matrix Anal. Appl. 21(1), 185–194 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, J., Singh, S.: LOAM : Lidar Odometry and Mapping in Real-time. In: Robotics: Science and Systems Conference (RSS) (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fang, Z. et al. (2016). Robust Autonomous Flight in Constrained and Visually Degraded Environments. In: Wettergreen, D., Barfoot, T. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-27702-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27702-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27700-4

  • Online ISBN: 978-3-319-27702-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics