Protein Metabolism

  • Åke Norberg
  • Felix Liebau
  • Jan WernermanEmail author


Protein metabolism is a core part of metabolism in particular in critical illness. Overall the critically ill subject has an elevated protein turnover to meet the demand associated with critical illness. Regulating mechanisms are incompletely understood, which make recommendations on nutrition support or other therapeutic efforts difficult. The alterations of protein metabolism in critical illness are not uniform between individual tissues, which make global nutrition protocols difficult to evaluate. Recent advances in isotopic techniques to assess protein turnovers in the whole body as well as in individual tissues or even proteins together with advances in imaging will give opportunities to better understand the mechanisms and consequently give more evidence-based recommendation over optimal care.


Critical Illness Lean Body Mass Protein Metabolism Synthesis Rate Label Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gamrin L, Essen P, Forsberg AM, Hultman E, Wernerman J (1996) A descriptive study of skeletal muscle metabolism in critically ill patients: free amino acids, energy-rich phosphates, protein, nucleic acids, fat, water, and electrolytes. Crit Care Med 24(4):575–583CrossRefPubMedGoogle Scholar
  2. 2.
    Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, Hopkinson NS, Padhke R, Dew T, Sidhu PS et al (2013) Acute skeletal muscle wasting in critical illness. JAMA 310(15):1591–1600CrossRefPubMedGoogle Scholar
  3. 3.
    Reid CL, Campbell IT, Little RA (2004) Muscle wasting and energy balance in critical illness. Clin Nutr 23(2):273–280CrossRefPubMedGoogle Scholar
  4. 4.
    Ishibashi N, Plank LD, Sando K, Hill GL (1998) Optimal protein requirements during the first 2 weeks after the onset of critical illness. Crit Care Med 26(9):1529–1535CrossRefPubMedGoogle Scholar
  5. 5.
    Larsson J, Lennmarken C, Martensson J, Sandstedt S, Vinnars E (1990) Nitrogen requirements in severely injured patients. Br J Surg 77(4):413–416CrossRefPubMedGoogle Scholar
  6. 6.
    Streat SJ, Beddoe AH, Hill GL (1987) Aggressive nutritional support does not prevent protein loss despite fat gain in septic intensive care patients. J Trauma 27(3):262–266CrossRefPubMedGoogle Scholar
  7. 7.
    Rooyackers O, Kouchek-Zadeh R, Tjader I, Norberg A, Klaude M, Wernerman J (2015) Whole body protein turnover in critically ill patients with multiple organ failure. Clin Nutr 34(1):95–100CrossRefPubMedGoogle Scholar
  8. 8.
    Klaude M, Mori M, Tjader I, Gustafsson T, Wernerman J, Rooyackers O (2012) Protein metabolism and gene expression in skeletal muscle of critically ill patients with sepsis. Clin Sci (Lond) 122(3):133–142CrossRefGoogle Scholar
  9. 9.
    Rooyackers O, Werneman J (2015) Protein intake in critical illness. In: Vincent J-L (ed) Annual update in intensive care and emergency medicine 2015. Springer, Berlin, pp 459–468. DOI  10.1007/978-3-319-13761-2_23
  10. 10.
    Rooyackers O, Wernerman J (2014) Imaging opens possibilities both to target and to evaluate nutrition in critical illness. Crit Care 18(3):144CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Weijs PJ, Looijaard WG, Dekker IM, Stapel SN, Girbes AR, Oudemans-van Straaten HM, Beishuizen A (2014) Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit Care 18(1):R12CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wolfe RR, Goodenough RD, Wolfe MH (1983) Isotopic approaches to the estimation of protein requirements in burn patients. Adv Shock Res 9:81–98PubMedGoogle Scholar
  13. 13.
    Berg A, Rooyackers O, Bellander BM, Wernerman J (2013) Whole body protein kinetics during hypocaloric and normocaloric feeding in critically ill patients. Crit Care 17(4):R158CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Liebau F, Sundstrom M, van Loon LJ, Wernerman J, Rooyackers O (2015) Short term amino acid infusion improves protein balance in critically ill patients. Crit Care 19(1):844CrossRefGoogle Scholar
  15. 15.
    Young VR, Havenberg LN, Bilmazes C, Munro HN (1973) Potential use of 3-methylhistidine excretion as an index of progressive reduction in muscle protein catabolism during starvation. Metabolism 23(2):1429–1436CrossRefPubMedGoogle Scholar
  16. 16.
    Vesali RF, Klaude M, Thunblad L, Rooyackers OE, Wernerman J (2004) Contractile protein breakdown in human leg skeletal muscle as estimated by [2H3]-3-methylhistidine: a new method. Metabolism 53(8):1076–1080CrossRefPubMedGoogle Scholar
  17. 17.
    Wernerman J, Vinnars E (1987) The effect of trauma and surgery on interorgan fluxes of amino acids in man. Clin Sci (Lond) 73(2):129–133CrossRefGoogle Scholar
  18. 18.
    Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR (1995) Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol 268(3 Pt 1):E514–E520PubMedGoogle Scholar
  19. 19.
    Barle H, Nyberg B, Essen P, Andersson K, McNurlan MA, Wernerman J, Garlick PJ (1997) The synthesis rates of total liver protein and plasma albumin determined simultaneously in vivo in humans. Hepatology 25(1):154–158PubMedGoogle Scholar
  20. 20.
    Garlick PJ, Wernerman J, McNurlan MA, Essen P, Lobley GE, Milne E, Calder GA, Vinnars E (1989) Measurement of the rate of protein synthesis in muscle of postabsorptive young men by injection of a ‘flooding dose’ of [1-13C]leucine. Clin Sci (Lond) 77(3):329–336CrossRefGoogle Scholar
  21. 21.
    Ballmer PE, McNurlan MA, Milne E, Heys SD, Buchan V, Calder AG, Garlick PJ (1990) Measurement of albumin synthesis in humans: a new approach employing stable isotopes. Am J Physiol 259(6 Pt 1):E797–E803PubMedGoogle Scholar
  22. 22.
    Januszkiewicz J, Klaude M, Loré K, Andersson J, Ringdén O, Rooyackers O, Wernerman J (2005) In vivo protein synthesis in immune cells of ICU patients. Clin Nutr 24:575Google Scholar
  23. 23.
    Essen P, McNurlan MA, Gamrin L, Hunter K, Calder G, Garlick PJ, Wernerman J (1998) Tissue protein synthesis rates in critically ill patients. Crit Care Med 26(1):92–100CrossRefPubMedGoogle Scholar
  24. 24.
    Fredriksson K, Tjader I, Keller P, Petrovic N, Ahlman B, Scheele C, Wernerman J, Timmons JA, Rooyackers O (2008) Dysregulation of mitochondrial dynamics and the muscle transcriptome in ICU patients suffering from sepsis induced multiple organ failure. PLoS One 3(11):e3686CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Biolo G, Fleming RY, Maggi SP, Nguyen TT, Herndon DN, Wolfe RR (2002) Inverse regulation of protein turnover and amino acid transport in skeletal muscle of hypercatabolic patients. J Clin Endocrinol Metab 87(7):3378–3384CrossRefPubMedGoogle Scholar
  26. 26.
    Biolo G, Bosutti A, Iscra F, Toigo G, Gullo A, Guarnieri G (2000) Contribution of the ubiquitin-proteasome pathway to overall muscle proteolysis in hypercatabolic patients. Metabolism 49(6):689–691CrossRefPubMedGoogle Scholar
  27. 27.
    Casaer MP, Van den Berghe G (2014) Nutrition in the acute phase of critical illness. N Engl J Med 370(13):1227–1236CrossRefPubMedGoogle Scholar
  28. 28.
    Hoffer LJ, Bistrian BR (2012) Appropriate protein provision in critical illness: a systematic and narrative review. Am J Clin Nutr 96(3):591–600CrossRefPubMedGoogle Scholar
  29. 29.
    Sauerwein HP, Serlie MJ (2010) Optimal nutrition and its potential effect on survival in critically ill patients. Neth J Med 68(3):119–122PubMedGoogle Scholar
  30. 30.
    Stein J, Boehles HJ, Blumenstein I, Goeters C, Schulz R, Working Group for Developing the Guidelines for Parenteral Nutrition of The German Association for Nutritional Medicine (2009) Amino acids – guidelines on parenteral nutrition, Chapter 4. GMS German medical science. 7:Doc24Google Scholar
  31. 31.
    World Health Organization (2007) Protein and amino acid requirements in human nutrition. WHO Technical Report Series, p 935Google Scholar
  32. 32.
    Kreymann KG, Berger MM, Deutz NE, Hiesmayr M, Jolliet P, Kazandjiev G, Nitenberg G, van den Berghe G, Wernerman J, Ebner C et al (2006) ESPEN guidelines on enteral nutrition: intensive care. Clin Nutr 25(2):210–223CrossRefPubMedGoogle Scholar
  33. 33.
    Singer P, Berger MM, Van den Berghe G, Biolo G, Calder P, Forbes A, Griffiths R, Kreyman G, Leverve X, Pichard C (2009) ESPEN guidelines on parenteral nutrition: intensive care. Clin Nutr 28(4):387–400CrossRefPubMedGoogle Scholar
  34. 34.
    Martindale RG, McClave SA, Vanek VW, McCarthy M, Roberts P, Taylor B, Ochoa JB, Napolitano L, Cresci G, American College of Critical Care M et al (2009) Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: society of Critical Care Medicine and American Society for parenteral and enteral nutrition: executive summary. Crit Care Med 37(5):1757–1761Google Scholar
  35. 35.
    Gamrin L, Essen P, Hultman E, McNurlan MA, Garlick PJ, Wernerman J (2000) Protein-sparing effect in skeletal muscle of growth hormone treatment in critically ill patients. Ann Surg 231(4):577–586CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Takala J, Ruokonen E, Webster NR, Nielsen MS, Zandstra DF, Vundelinckx G, Hinds CJ (1999) Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med 341(11):785–792CrossRefPubMedGoogle Scholar
  37. 37.
    Gore DC, Wolf SE, Sanford AP, Herndon DN, Wolfe RR (2004) Extremity hyperinsulinemia stimulates muscle protein synthesis in severely injured patients. Am J Physiol Endocrinol Metab 286(4):E529–E534CrossRefPubMedGoogle Scholar
  38. 38.
    Ferrando AA, Raj D, Wolfe RR (2005) Amino acid control of muscle protein turnover in renal disease. J Ren Nutr Off J Counc Ren Nutr Natl Kidney Found 15(1):34–38CrossRefGoogle Scholar
  39. 39.
    Jiang ZM, Wilmore DW, Liu W, Liu YW (2000) Growth factors in clinical practice. World J Surg 24(12):1514–1518CrossRefPubMedGoogle Scholar
  40. 40.
    Gauglitz GG, Williams FN, Herndon DN, Jeschke MG (2011) Burns: where are we standing with propranolol, oxandrolone, recombinant human growth hormone, and the new incretin analogs? Curr Opin Clin Nutr Metab Care 14(2):176–181CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Schonheyder F, Heilskov NS, Olesen K (1954) Isotopic studies on the mechanism of negative nitrogen balance produced by immobilization. Scand J Clin Lab Invest 6(3):178–188CrossRefPubMedGoogle Scholar
  42. 42.
    Dalla Libera L, Ravara B, Gobbo V, Tarricone E, Vitadello M, Biolo G, Vescovo G, Gorza L (2009) A transient antioxidant stress response accompanies the onset of disuse atrophy in human skeletal muscle. J Appl Physiol 107(2):549–557CrossRefPubMedGoogle Scholar
  43. 43.
    Winkelman C (2007) Inactivity and inflammation in the critically ill patient. Crit Care Clin 23(1):21–34CrossRefPubMedGoogle Scholar
  44. 44.
    Weber-Carstens S, Schneider J, Wollersheim T, Assmann A, Bierbrauer J, Marg A, Al Hasani H, Chadt A, Wenzel K, Koch S et al (2013) Critical illness myopathy and GLUT4: significance of insulin and muscle contraction. Am J Respir Crit Care Med 187(4):387–396CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Anesthesiology and Intensive Care MedicineKarolinska University Hospital Huddinge and Karolinska InstituteStockholmSweden

Personalised recommendations