Advertisement

Mitochondrial Adaptation and Hibernation

  • Jonathan Grip
  • Nicolas Tardif
  • Olav RooyackersEmail author
Chapter

Abstract

Stress in the form of critical illness and organ failure is associated with damaged and dysfunctional mitochondria. However, actual function of mitochondria in sepsis and their role in the development of organ failure are not fully characterized, partly due to the heterogeneity of the disease, variation and difficulties in methods for studying mitochondrial function, and the problem that available animal model does not seem to represent the human situation very well. On the other hand, it seems that the mitochondrial dysfunction is accompanied by decreased metabolic demands or oxygen consumption, and it has therefore been hypothesized that a mitochondrial downregulation and hypometabolism are adaptive responses in order for the organ to survive the stressful event, similar to hibernation seen in some animals. Even though this theory is interesting and there is support for decreased metabolism in critical illness, the response does not mimic the regulatory mechanism seen in “true” hibernation that, e.g., is accompanied with a drop in body temperature. We look forward to further studies that may lead to a stronger rationale for, or disproves, the theories of metabolic downregulation in critical illness-related organ failure.

Keywords

Organ Failure Mitochondrial Function Critical Illness Mitochondrial Respiration Mitochondrial Biogenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Brealey D, Singer M (2003) Mitochondrial dysfunction in sepsis. Curr Infect Dis Rep 5(5):365–371CrossRefPubMedGoogle Scholar
  2. 2.
    Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8(11):870–879CrossRefPubMedGoogle Scholar
  3. 3.
    Detmer SA, Chan DC (2007) Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects caused by CMT2A disease mutations. J Cell Biol 176(4):405–414CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125(7):1241–1252CrossRefPubMedGoogle Scholar
  5. 5.
    Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y et al (1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366(1–2):177–196CrossRefPubMedGoogle Scholar
  6. 6.
    Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9(1):47–59CrossRefPubMedGoogle Scholar
  7. 7.
    Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T et al (2001) BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8(3):705–711CrossRefPubMedGoogle Scholar
  8. 8.
    Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275(5303):1132–1136CrossRefPubMedGoogle Scholar
  9. 9.
    Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J et al (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275(5303):1129–1132CrossRefPubMedGoogle Scholar
  10. 10.
    Wang X, Yang C, Chai J, Shi Y, Xue D (2002) Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science 298(5598):1587–1592CrossRefPubMedGoogle Scholar
  11. 11.
    Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N et al (2012) Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 590(Pt 14):3349–3360CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fredriksson K, Flaring U, Guillet C, Wernerman J, Rooyackers O (2009) Muscle mitochondrial activity increases rapidly after an endotoxin challenge in human volunteers. Acta Anaesthesiol Scand 53(3):299–304CrossRefPubMedGoogle Scholar
  13. 13.
    Tonkonogi M, Harris B, Sahlin K (1997) Increased activity of citrate synthase in human skeletal muscle after a single bout of prolonged exercise. Acta Physiol Scand 161(3):435–436CrossRefPubMedGoogle Scholar
  14. 14.
    Kuznetsov AV, Veksler V, Gellerich FN, Saks V, Margreiter R, Kunz WS (2008) Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc 3(6):965–976CrossRefPubMedGoogle Scholar
  15. 15.
    Pesta D, Gnaiger E (2012) High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol 810:25–58CrossRefPubMedGoogle Scholar
  16. 16.
    Spinazzi M, Casarin A, Pertegato V, Salviati L, Angelini C (2012) Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat Protoc 7(6):1235–1246CrossRefPubMedGoogle Scholar
  17. 17.
    Picard M, Taivassalo T, Gouspillou G, Hepple RT (2011) Mitochondria: isolation, structure and function. J Physiol 589(Pt 18):4413–4421CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Picard M, Taivassalo T, Ritchie D, Wright KJ, Thomas MM, Romestaing C et al (2011) Mitochondrial structure and function are disrupted by standard isolation methods. PLoS One 6(3):e18317CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Makrecka-Kuka M, Krumschnabel G, Gnaiger E (2015) High-resolution respirometry for simultaneous measurement of oxygen and hydrogen peroxide fluxes in permeabilized cells, tissue homogenate and isolated mitochondria. Biomolecules 5(3):1319–1338CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Soderlund K, Hultman E (1986) Effects of delayed freezing on content of phosphagens in human skeletal muscle biopsy samples. J Appl Physiol 61(3):832–835PubMedGoogle Scholar
  21. 21.
    Rooyackers OE, Hesselink MKC, Wagenmakers AJM (1994) Impaired energy metabolism in muscle of zymosan treated rats recovering from critical illness. Clin Nutr 13(Suppl 1):6CrossRefGoogle Scholar
  22. 22.
    Lanza IR, Nair KS (2009) Functional assessment of isolated mitochondria in vitro. Methods Enzymol 457:349–372CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hamaoka T, Iwane H, Shimomitsu T, Katsumura T, Murase N, Nishio S et al (1996) Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy. J Appl Physiol 81(3):1410–1417PubMedGoogle Scholar
  24. 24.
    Jeger V, Djafarzadeh S, Jakob SM, Takala J (2013) Mitochondrial function in sepsis. Eur J Clin Invest 43(5):532–42CrossRefPubMedGoogle Scholar
  25. 25.
    Singer M (2014) The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 5(1):66–72CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360(9328):219–223CrossRefPubMedGoogle Scholar
  27. 27.
    Ahlbeck K, Fredriksson K, Rooyackers O, Maback G, Remahl S, Ansved T et al (2009) Signs of critical illness polyneuropathy and myopathy can be seen early in the ICU course. Acta Anaesthesiol Scand 53(6):717–723CrossRefPubMedGoogle Scholar
  28. 28.
    Fredriksson K, Hammarqvist F, Strigard K, Hultenby K, Ljungqvist O, Wernerman J et al (2006) Derangements in mitochondrial metabolism in intercostal and leg muscle of critically ill patients with sepsis-induced multiple organ failure. Am J Physiol Endocrinol Metab 291(5):E1044–E1050CrossRefPubMedGoogle Scholar
  29. 29.
    Fredriksson K, Tjader I, Keller P, Petrovic N, Ahlman B, Scheele C et al (2008) Dysregulation of mitochondrial dynamics and the muscle transcriptome in ICU patients suffering from sepsis induced multiple organ failure. PLoS One 3(11):e3686CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Carre JE, Orban JC, Re L, Felsmann K, Iffert W, Bauer M et al (2010) Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med 182(6):745–751CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Vanhorebeek I, Gunst J, Derde S, Derese I, Boussemaere M, D’Hoore A et al (2012) Mitochondrial fusion, fission, and biogenesis in prolonged critically ill patients. J Clin Endocrinol Metab 97(1):E59–E64CrossRefPubMedGoogle Scholar
  32. 32.
    Singer M (2007) Mitochondrial function in sepsis: acute phase versus multiple organ failure. Crit Care Med 35(9 Suppl):S441–S448CrossRefPubMedGoogle Scholar
  33. 33.
    Grip J, Jakobsson T, Hebert C, Klaude M, Sandstrom G, Wernerman J et al (2015) Lactate kinetics and mitochondrial respiration in skeletal muscle of healthy humans under influence of adrenaline. Clin Sci 129(4):375–384CrossRefPubMedGoogle Scholar
  34. 34.
    Garrabou G, Moren C, Lopez S, Tobias E, Cardellach F, Miro O et al (2012) The effects of sepsis on mitochondria. J Infect Dis 205(3):392–400CrossRefPubMedGoogle Scholar
  35. 35.
    Boulos M, Astiz ME, Barua RS, Osman M (2003) Impaired mitochondrial function induced by serum from septic shock patients is attenuated by inhibition of nitric oxide synthase and poly(ADP-ribose) synthase. Crit Care Med 31(2):353–358CrossRefPubMedGoogle Scholar
  36. 36.
    Sjovall F, Morota S, Persson J, Hansson MJ, Elmer E (2013) Patients with sepsis exhibit increased mitochondrial respiratory capacity in peripheral blood immune cells. Crit Care 17(4):R152CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Japiassu AM, Santiago AP, d’Avila JC, Garcia-Souza LF, Galina A, Castro Faria-Neto HC et al (2011) Bioenergetic failure of human peripheral blood monocytes in patients with septic shock is mediated by reduced F1Fo adenosine-5'-triphosphate synthase activity. Crit Care Med 39(5):1056–1063CrossRefPubMedGoogle Scholar
  38. 38.
    Belikova I, Lukaszewicz AC, Faivre V, Damoisel C, Singer M, Payen D (2007) Oxygen consumption of human peripheral blood mononuclear cells in severe human sepsis. Crit Care Med 35(12):2702–2708CrossRefPubMedGoogle Scholar
  39. 39.
    Sjovall F, Hansson MJ, Elmer E (2012) Platelet mitochondrial function in sepsis. Crit Care Med 40(1):357; author reply −8CrossRefPubMedGoogle Scholar
  40. 40.
    Sjovall F, Morota S, Hansson MJ, Friberg H, Gnaiger E, Elmer E (2010) Temporal increase of platelet mitochondrial respiration is negatively associated with clinical outcome in patients with sepsis. Crit Care 14(6):R214CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kramer PA, Ravi S, Chacko B, Johnson MS, Darley-Usmar VM (2014) A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers. Redox Biol 2:206–210CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Protti A, Fortunato F, Caspani ML, Pluderi M, Lucchini V, Grimoldi N et al (2014) Mitochondrial changes in platelets are not related to those in skeletal muscle during human septic shock. PLoS One 9(5):e96205CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Staples JF (2014) Metabolic suppression in mammalian hibernation: the role of mitochondria. J Exp Biol 217(Pt 12):2032–2036CrossRefPubMedGoogle Scholar
  44. 44.
    Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274CrossRefPubMedGoogle Scholar
  45. 45.
    Van Breukelen F, Martin SL (2002) Invited review: molecular adaptations in mammalian hibernators: unique adaptations or generalized responses? J Appl Physiol 92(6):2640–2647CrossRefPubMedGoogle Scholar
  46. 46.
    Staples JF, Brown JC (2008) Mitochondrial metabolism in hibernation and daily torpor: a review. J Comp Physiol B Biochem Syst Environ Physiol 178(7):811–827CrossRefGoogle Scholar
  47. 47.
    Storey KB (2010) Out cold: biochemical regulation of mammalian hibernation – a mini-review. Gerontology 56(2):220–230CrossRefPubMedGoogle Scholar
  48. 48.
    Xu R, Andres-Mateos E, Mejias R, MacDonald EM, Leinwand LA, Merriman DK et al (2013) Hibernating squirrel muscle activates the endurance exercise pathway despite prolonged immobilization. Exp Neurol 247:392–401CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83(4):1153–1181CrossRefPubMedGoogle Scholar
  50. 50.
    Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118(19):1915–1919CrossRefPubMedGoogle Scholar
  51. 51.
    Tonkonogi M, Fernstrom M, Walsh B, Ji LL, Rooyackers O, Hammarqvist F et al (2003) Reduced oxidative power but unchanged antioxidative capacity in skeletal muscle from aged humans. Pflugers Archiv Eur J Physiol 446(2):261–269CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jonathan Grip
    • 1
  • Nicolas Tardif
    • 1
  • Olav Rooyackers
    • 1
    Email author
  1. 1.Department of Anesthesiology and Intensive CareKarolinska University Hospital and Karolinska InstituteHuddingeSweden

Personalised recommendations