Thyroidal Changes During Critical Illness

  • Lies Langouche
  • Greet Van den BergheEmail author


Patients suffering from a variety of critical illnesses present with uniform alterations within the thyroid axis with low plasma triiodothyronine (T3), but increased plasma reverse T3 (rT3). As these changes occur in the presence of low-normal thyroid stimulating hormone (TSH), this constellation is also referred to as Nonthyroidal Illness Syndrome (NTI). Both central and peripheral components of the thyroidal axis play a role in the development of NTI. Furthermore, nutritional intake can affect the extent and composition of NTI. The severity of NTI is associated with a poor prognosis, but it is still unclear whether this indicates a causal relationship, or in contrast, an adaptation to more severe illness.


Critical Illness Primary Hypothyroidism Thyroid Axis Thyroid Storm Nonthyroidal Illness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Supported by the Methusalem Program of the Flemish Government (METH/14/06) to GVdB via the KU Leuven, by an ERC Advanced Grant (AdvG-2012-321670) to GVdB from the Ideas Program of the European Union seventh framework program.

Conflicts of Interest

The authors have no conflicts of interest to disclose.


  1. 1.
    Yen PM (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 81(3):1097–1142PubMedGoogle Scholar
  2. 2.
    Mullur R, Liu YY, Brent GA (2014) Thyroid hormone regulation of metabolism. Physiol Rev 94(2):355–382CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Goldsmith RE, Stanbury JB, Brownell GL (1951) The effect of thyrotropin on the release of hormone from the human thyroid. J Clin Endocrinol Metab 11(10):1079–1094CrossRefPubMedGoogle Scholar
  4. 4.
    Weintraub BD, Wondisford FE, Farr EA et al (1989) Pre-translational and post-translational regulation of TSH synthesis in normal and neoplastic thyrotrophs. Horm Res 32(1–3):22–24CrossRefPubMedGoogle Scholar
  5. 5.
    Bodenner DL, Mroczynski MA, Weintraub BD, Radovick S, Wondisford FE (1991) A detailed functional and structural analysis of a major thyroid hormone inhibitory element in the human thyrotropin beta-subunit gene. J Biol Chem 266(32):21666–21673PubMedGoogle Scholar
  6. 6.
    Oppenheimer JH (1968) Role of plasma proteins in the binding, distribution and metabolism of the thyroid hormones. N Engl J Med 278(21):1153–1162CrossRefPubMedGoogle Scholar
  7. 7.
    Visser WE, Friesema EC, Jansen J, Visser TJ (2008) Thyroid hormone transport in and out of cells. Trends Endocrinol Metab 19(2):50–56CrossRefPubMedGoogle Scholar
  8. 8.
    Zevenbergen C, Meima ME, Lima de Souza EC et al (2015) transport of iodothyronines by human l-type amino acid transporters. Endocrinology 156(11):4345–4355. doi: 10.1210/en2015-1140 CrossRefPubMedGoogle Scholar
  9. 9.
    Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR (2002) Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23(1):38–89CrossRefPubMedGoogle Scholar
  10. 10.
    Friesema EC, Jansen J, Visser TJ (2005) Thyroid hormone transporters. Biochem Soc Trans 33(Pt 1):228–232CrossRefPubMedGoogle Scholar
  11. 11.
    Cheng SY, Leonard JL, Davis PJ (2010) Molecular aspects of thyroid hormone actions. Endocr Rev 31(2):139–170CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Van den Berghe G (2000) Novel insights into the neuroendocrinology of critical illness. Eur J Endocrinol 143(1):1–13CrossRefPubMedGoogle Scholar
  13. 13.
    Rothwell PM, Lawler PG (1995) Prediction of outcome in intensive care patients using endocrine parameters. Crit Care Med 23(1):78–83CrossRefPubMedGoogle Scholar
  14. 14.
    Rothwell PM, Udwadia ZF, Lawler PG (1993) Thyrotropin concentration predicts outcome in critical illness. Anaesthesia 48(5):373–376CrossRefPubMedGoogle Scholar
  15. 15.
    Romijn JA, Wiersinga WM (1990) Decreased nocturnal surge of thyrotropin in nonthyroidal illness. J Clin Endocrinol Metab 70(1):35–42CrossRefPubMedGoogle Scholar
  16. 16.
    Van den Berghe G, de Zegher F, Veldhuis JD et al (1997) Thyrotropin and prolactin release in prolonged critical illness: dynamics of spontaneous secretion and effects of growth hormone-secretagogues. Clin Endocrinol (Oxf) 47(5):599–612CrossRefGoogle Scholar
  17. 17.
    Peeters RP, Wouters PJ, van Toor H, Kaptein E, Visser TJ, Van den Berghe G (2005) Serum rT3 and T3/rT3 are prognostic markers in critically ill patients and are associated with post-mortem tissue deiodinase activities. J Clin Endocrinol Metab 90(8):4559–4565CrossRefPubMedGoogle Scholar
  18. 18.
    Refetoff S, Robin NI, Fang VS (1970) Parameters of thyroid function in serum of 16 selected vertebrate species: a study of PBI, serum T4, free T4, and the pattern of T4 and T3 binding to serum proteins. Endocrinology 86(4):793–805CrossRefPubMedGoogle Scholar
  19. 19.
    Docter R, van Toor H, Krenning EP, de Jong M, Hennemann G (1993) Free thyroxine assessed with three assays in sera of patients with nonthyroidal illness and of subjects with abnormal concentrations of thyroxine-binding proteins. Clin Chem 39(8):1668–1674PubMedGoogle Scholar
  20. 20.
    Van den Berghe G, de Zegher F, Vlasselaers D et al (1996) Thyrotropin-releasing hormone in critical illness: from a dopamine-dependent test to a strategy for increasing low serum triiodothyronine, prolactin, and growth hormone concentrations. Crit Care Med 24(4):590–595CrossRefPubMedGoogle Scholar
  21. 21.
    Peeters RP, Wouters PJ, Kaptein E, van Toor H, Visser TJ, Van den Berghe G (2003) Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J Clin Endocrinol Metab 88(7):3202–3211CrossRefPubMedGoogle Scholar
  22. 22.
    Boelen A, Kwakkel J, Thijssen-Timmer DC, Alkemade A, Fliers E, Wiersinga WM (2004) Simultaneous changes in central and peripheral components of the hypothalamus-pituitary-thyroid axis in lipopolysaccharide-induced acute illness in mice. J Endocrinol 182(2):315–323CrossRefPubMedGoogle Scholar
  23. 23.
    Rodriguez-Perez A, Palos-Paz F, Kaptein E et al (2008) Identification of molecular mechanisms related to nonthyroidal illness syndrome in skeletal muscle and adipose tissue from patients with septic shock. Clin Endocrinol (Oxf) 68(5):821–827CrossRefGoogle Scholar
  24. 24.
    Peeters RP, Geyten S, Wouters PJ et al (2005) Tissue thyroid hormone levels in critical illness. J Clin Endocrinol Metab 90(12):6498–6507CrossRefPubMedGoogle Scholar
  25. 25.
    Mebis L, Paletta D, Debaveye Y et al (2009) Expression of thyroid hormone transporters during critical illness. Eur J Endocrinol 161(2):243–250CrossRefPubMedGoogle Scholar
  26. 26.
    Mebis L, Langouche L, Visser TJ, Van den Berghe G (2007) The type II iodothyronine deiodinase is up-regulated in skeletal muscle during prolonged critical illness. J Clin Endocrinol Metab 92(8):3330–3333CrossRefPubMedGoogle Scholar
  27. 27.
    Ma SF, Xie L, Pino-Yanes M et al (2011) Type 2 deiodinase and host responses of sepsis and acute lung injury. Am J Respir Cell Mol Biol 45(6):1203–1211CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mebis L, Debaveye Y, Ellger B et al (2009) Changes in the central component of the hypothalamus-pituitary-thyroid axis in a rabbit model of prolonged critical illness. Crit Care 13(5):R147CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Fekete C, Gereben B, Doleschall M et al (2004) Lipopolysaccharide induces type 2 iodothyronine deiodinase in the mediobasal hypothalamus: implications for the nonthyroidal illness syndrome. Endocrinology 145(4):1649–1655CrossRefPubMedGoogle Scholar
  30. 30.
    Thijssen-Timmer DC, Peeters RP, Wouters P et al (2007) Thyroid hormone receptor isoform expression in livers of critically ill patients. Thyroid 17(2):105–112CrossRefPubMedGoogle Scholar
  31. 31.
    Schutz P, Bally M, Stanga Z, Keller U (2014) Loss of appetite in acutely ill medical inpatients: physiological response or therapeutic target? Swiss Med Wkly 144:w13957PubMedGoogle Scholar
  32. 32.
    Everts ME, Jong M, Lim CF et al (1996) Different regulation of thyroid hormone transport in liver and pituitary: its possible role in the maintenance of low T3 production during nonthyroidal illness and fasting in man. Thyroid 6(4):359–368CrossRefPubMedGoogle Scholar
  33. 33.
    Boelen A, Wiersinga WM, Fliers E (2008) Fasting-induced changes in the hypothalamus-pituitary-thyroid axis. Thyroid 18(2):123–129CrossRefPubMedGoogle Scholar
  34. 34.
    Gardner DF, Kaplan MM, Stanley CA, Utiger RD (1979) Effect of tri-iodothyronine replacement on the metabolic and pituitary responses to starvation. N Engl J Med 300(11):579–584CrossRefPubMedGoogle Scholar
  35. 35.
    Chourdakis M, Kraus MM, Tzellos T et al (2012) Effect of early compared with delayed enteral nutrition on endocrine function in patients with traumatic brain injury: an open-labeled randomized trial. JPEN J Parenter Enteral Nutr 36(1):108–116CrossRefPubMedGoogle Scholar
  36. 36.
    Richmand DA, Molitch ME, O’Donnell TF (1980) Altered thyroid hormone levels in bacterial sepsis: the role of nutritional adequacy. Metabolism 29(10):936–942CrossRefPubMedGoogle Scholar
  37. 37.
    Ouchi K, Matsubara S, Matsuno S (1991) Effects of supplementary parenteral nutrition on thyroid hormone patterns in surgical patients with liver cirrhosis. Nutrition 7(3):189–192PubMedGoogle Scholar
  38. 38.
    Casaer MP, Mesotten D, Hermans G et al (2011) Early versus late parenteral nutrition in critically ill adults. N Engl J Med 365(6):506–517CrossRefPubMedGoogle Scholar
  39. 39.
    Langouche L, Vander PS, Marques M et al (2013) Impact of early nutrient restriction during critical illness on the nonthyroidal illness syndrome and its relation with outcome: a randomized, controlled clinical study. J Clin Endocrinol Metab 98(3):1006–1013CrossRefPubMedGoogle Scholar
  40. 40.
    Mebis L, Eerdekens A, Guiza F et al (2012) Contribution of nutritional deficit to the pathogenesis of the nonthyroidal illness syndrome in critical illness: a rabbit model study. Endocrinology 153(2):973–984CrossRefPubMedGoogle Scholar
  41. 41.
    Gielen M, Mesotten D, Wouters PJ et al (2012) Effect of tight glucose control with insulin on the thyroid axis of critically ill children and its relation with outcome. J Clin Endocrinol Metab 97(10):3569–3576CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Fliers E, Guldenaar SE, Wiersinga WM, Swaab DF (1997) Decreased hypothalamic thyrotropin-releasing hormone gene expression in patients with nonthyroidal illness. J Clin Endocrinol Metab 82(12):4032–4036PubMedGoogle Scholar
  43. 43.
    Langouche L, Princen L, Gunst J, Guiza F, Derde S, Van den Berghe G (2013) Anterior pituitary morphology and hormone production during sustained critical illness in a rabbit model. Horm Metab Res 45(4):277–282PubMedGoogle Scholar
  44. 44.
    Van den Berghe G, de Zegher F, Baxter RC et al (1998) Neuroendocrinology of prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone secretagogues. J Clin Endocrinol Metab 83(2):309–319PubMedGoogle Scholar
  45. 45.
    Van den Berghe G, Wouters P, Weekers F et al (1999) Reactivation of pituitary hormone release and metabolic improvement by infusion of growth hormone-releasing peptide and thyrotropin-releasing hormone in patients with protracted critical illness. J Clin Endocrinol Metab 84(4):1311–1323PubMedGoogle Scholar
  46. 46.
    Bacci V, Schussler GC, Kaplan TB (1982) The relationship between serum triiodothyronine and thyrotropin during systemic illness. J Clin Endocrinol Metab 54(6):1229–1235CrossRefPubMedGoogle Scholar
  47. 47.
    Boelen A, Platvoet-ter Schiphorst MC, Bakker O, Wiersinga WM (1995) The role of cytokines in the lipopolysaccharide-induced sick euthyroid syndrome in mice. J Endocrinol 146(3):475–483CrossRefPubMedGoogle Scholar
  48. 48.
    Van der Poll T, Romijn JA, Wiersinga WM, Sauerwein HP (1990) Tumor necrosis factor: a putative mediator of the sick euthyroid syndrome in man. J Clin Endocrinol Metab 71(6):1567–1572CrossRefPubMedGoogle Scholar
  49. 49.
    Mooradian AD, Reed RL, Osterweil D, Schiffman R, Scuderi P (1990) Decreased serum triiodothyronine is associated with increased concentrations of tumor necrosis factor. J Clin Endocrinol Metab 71(5):1239–1242CrossRefPubMedGoogle Scholar
  50. 50.
    Chopra IJ, Sakane S, Teco GN (1991) A study of the serum concentration of tumor necrosis factor-alpha in thyroidal and nonthyroidal illnesses. J Clin Endocrinol Metab 72(5):1113–1116CrossRefPubMedGoogle Scholar
  51. 51.
    Van der Poll T, Van Zee KJ, Endert E et al (1995) Interleukin-1 receptor blockade does not affect endotoxin-induced changes in plasma thyroid hormone and thyrotropin concentrations in man. J Clin Endocrinol Metab 80(4):1341–1346PubMedGoogle Scholar
  52. 52.
    Van der Poll T, Endert E, Coyle SM, Agosti JM, Lowry SF (1999) Neutralization of TNF does not influence endotoxin induced changes in thyroid hormone metabolism in humans. Am J Physiol 276(2 Pt 2):R357–R362PubMedGoogle Scholar
  53. 53.
    Van den Berghe G, de Zegher F, Lauwers P (1994) Dopamine and the sick euthyroid syndrome in critical illness. Clin Endocrinol (Oxf) 41(6):731–737CrossRefGoogle Scholar
  54. 54.
    Faglia G, Ferrari C, Beck-Peccoz P, Spada A, Travaglini P, Ambrosi B (1973) Reduced plasma thyrotropin response to thyrotropin releasing hormone after dexamethasone administration in normal subjects. Horm Metab Res 5(4):289–292CrossRefPubMedGoogle Scholar
  55. 55.
    Forceville X, Vitoux D, Gauzit R, Combes A, Lahilaire P, Chappuis P (1998) Selenium, systemic immune response syndrome, sepsis, and outcome in critically ill patients. Crit Care Med 26(9):1536–1544CrossRefPubMedGoogle Scholar
  56. 56.
    Berger MM, Reymond MJ, Shenkin A et al (2001) Influence of selenium supplements on the post-traumatic alterations of the thyroid axis: a placebo-controlled trial. Intensive Care Med 27(1):91–100CrossRefPubMedGoogle Scholar
  57. 57.
    Vidart J, Wajner SM, Leite RS et al (2014) N-acetylcysteine administration prevents nonthyroidal illness syndrome in patients with acute myocardial infarction: a randomized clinical trial. J Clin Endocrinol Metab 99(12):4537–4545CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Boelen A, Kwakkel J, Fliers E (2011) Beyond low plasma T3: local thyroid hormone metabolism during inflammation and infection. Endocr Rev 32(5):670–693CrossRefPubMedGoogle Scholar
  59. 59.
    Boelen A, Boorsma J, Kwakkel J et al (2008) Type 3 deiodinase is highly expressed in infiltrating neutrophilic granulocytes in response to acute bacterial infection. Thyroid 18(10):1095–1103CrossRefPubMedGoogle Scholar
  60. 60.
    Kwakkel J, Surovtseva OV, de Vries EM, Stap J, Fliers E, Boelen A (2014) A novel role for the thyroid hormone-activating enzyme type 2 deiodinase in the inflammatory response of macrophages. Endocrinology 155(7):2725–2734CrossRefPubMedGoogle Scholar
  61. 61.
    Brent GA, Hershman JM (1986) Thyroxine therapy in patients with severe nonthyroidal illnesses and low serum thyroxine concentration. J Clin Endocrinol Metab 63(1):1–8CrossRefPubMedGoogle Scholar
  62. 62.
    Bettendorf M, Schmidt KG, Grulich-Henn J, Ulmer HE, Heinrich UE (2000) Tri-iodothyronine treatment in children after cardiac surgery: a double-blind, randomised, placebo-controlled study. Lancet 356(9229):529–534CrossRefPubMedGoogle Scholar
  63. 63.
    Barrett NA, Jones A, Whiteley C, Yassin S, McKenzie CA (2012) Management of long-term hypothyroidism: a potential marker of quality of medicines reconciliation in the intensive care unit. Int J Pharm Pract 20(5):303–306CrossRefPubMedGoogle Scholar
  64. 64.
    Ringel MD (2001) Management of hypothyroidism and hyperthyroidism in the intensive care unit. Crit Care Clin 17(1):59–74CrossRefPubMedGoogle Scholar
  65. 65.
    Fliers E, Wiersinga WM (2003) Myxedema coma. Rev Endocr Metab Disord 4(2):137–141CrossRefPubMedGoogle Scholar
  66. 66.
    Angell TE, Lechner MG, Nguyen CT, Salvato VL, Nicoloff JT, LoPresti JS (2015) Clinical features and hospital outcomes in thyroid storm: a retrospective cohort study. J Clin Endocrinol Metab 100(2):451–459CrossRefPubMedGoogle Scholar
  67. 67.
    Papi G, Corsello SM, Pontecorvi A (2014) Clinical concepts on thyroid emergencies. Front Endocrinol (Lausanne) 5:102Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Cellular and Molecular MedicineClinical Division and Laboratory of Intensive Care MedicineLeuvenBelgium

Personalised recommendations