• Mette M. BergerEmail author


The status of 11 trace elements and 13 vitamins, collectively named micronutrients, is challenged in several critical care conditions. Inflammation and oxidative stress cause redistribution of micronutrients to organs involved in synthesis and immunity resulting in significant drops of plasma concentrations even in absence of real deficits. Nevertheless these changes alter the organism’s capacity to respond to circulating stressors, and participate in worsening organ function in patients dependent on intensive care. Only one vitamin deficiency may be critical during the first 48 hours: Thiamine. Other alterations will result in later consequences in conditions characterized by the combination of a strong inflammation and of losses of biological fluids. The properties, risks and potential for intervention of the essential micronutrients are discussed, mainly regarding their immune, antioxidant and wound healing properties. The place in metabolism of carnitine and choline, actually missing in parenteral nutrition, is addressed.


Parenteral Nutrition Critical Illness Intensive Care Unit Patient Continuous Renal Replacement Therapy Thiamine Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cotzias GC (1967) Importance of trace element substances in experimental health, as exemplified by manganese. Proc First Conf Trace Subst Environ Health 1967:5–19Google Scholar
  2. 2.
    Cox CE (2012) Persistent systemic inflammation in chronic critical illness. Respir Care 57:859–864; discussion 64–66CrossRefPubMedGoogle Scholar
  3. 3.
    Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. New Engl J Med 348:138–150CrossRefPubMedGoogle Scholar
  4. 4.
    Ghashut RA, McMillan DC, Kinsella J, Vasilaki AT, Talwar D, Duncan A (2015) The effect of the systemic inflammatory response on plasma zinc and selenium adjusted for albumin. Clin Nutr 2015 Feb 26; e-pub doi:  10.1016/j.clnu.2015.02.010
  5. 5.
    Mertens K, Lowes DA, Webster NR et al (2015) Low zinc and selenium concentrations in sepsis are associated with oxidative damage and inflammation. Brit J Anaesth 114:990–999CrossRefPubMedGoogle Scholar
  6. 6.
    Manzanares W, Hardy G (2011) Thiamine supplementation in the critically ill. Curr Opin Clin Nutr Metab Care 14:610–617CrossRefPubMedGoogle Scholar
  7. 7.
    Bandmann O, Weiss KH, Kaler SG (2015) Wilson’s disease and other neurological copper disorders. Lancet Neurol 14:103–113CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hordyjewska A, Popiolek L, Kocot J (2014) The many “faces” of copper in medicine and treatment. Biometals 27:611–621CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wilson HO, Datta DB (2014) Complications from micronutrient deficiency following bariatric surgery. Ann Clin Biochem 51:705–709CrossRefPubMedGoogle Scholar
  10. 10.
    Berger MM, Shenkin A, Revelly JP et al (2004) Copper, selenium, zinc and thiamine balances during continuous venovenous hemodiafiltration in critically ill patients. Am J Clin Nutr 80:410–416PubMedGoogle Scholar
  11. 11.
    Bonafé L, Berger MM, Que YA, Mechanick JI (2014) Carnitine deficiency in chronic critical illness. Curr Opin Clin Nutr Metab Care 17:200–209CrossRefPubMedGoogle Scholar
  12. 12.
    Berger MM, Shenkin A (1998) Trace elements in trauma and burns. Curr Opin Clin Nutr Metab Care 1:513–517CrossRefPubMedGoogle Scholar
  13. 13.
    Gosling P, Rothe HM, Sheehan TM, Hubbard LD (1995) Serum copper and zinc concentrations in patients with burns in relation to burn surface area. J Burn Care Rehab 16:481–486CrossRefGoogle Scholar
  14. 14.
    Berger MM, Baines M, Raffoul W et al (2007) Trace element supplements after major burns modulate antioxidant status and clinical course by way of increased tissue trace element concentration. Am J Clin Nutr 85:1293–1300PubMedGoogle Scholar
  15. 15.
    Heming N, Montravers P, Lasocki S (2011) Iron deficiency in critically ill patients: highlighting the role of hepcidin. Crit Care 15:210CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Piagnerelli M, Cotton F, Herpain A et al (2013) Time course of iron metabolism in critically ill patients. Acta Clin Belg 68:22–27CrossRefPubMedGoogle Scholar
  17. 17.
    Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L (2015) Iron deficiency anaemia. Lancet 2015 Aug 24 epub: doi:  10.1016/S0140-6736(15)60865-0
  18. 18.
    Duntas LH, Benvenga S (2015) Selenium: an element for life. Endocrine 48:756–775CrossRefPubMedGoogle Scholar
  19. 19.
    Brigelius-Flohe R, Maiorino M (1830) Glutathione peroxidases. Biochim Biophys Acta 2013:3289–3303Google Scholar
  20. 20.
    Forceville X, Vitoux D, Gauzit R, Combes A, Lahilaire P, Chappuis P (1998) Selenium, systemic immune response syndrome, sepsis, and outcome in critically ill patients. Crit Care Med 26:1536–1544CrossRefPubMedGoogle Scholar
  21. 21.
    Prasad AS (2013) Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr 4:176–190CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sandstead HH (2013) Human zinc deficiency: discovery to initial translation. Adv Nutr 4:76–81CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gruzewska K, Michno A, Pawelczyk T, Bielarczyk H (2014) Essentiality and toxicity of vanadium supplements in health and pathology. J Physiol Pharmacol 65:603–611PubMedGoogle Scholar
  24. 24.
    Ozturk N, Olgar Y, Ozdemir S (2013) Trace elements in diabetic cardiomyopathy: an electrophysiological overview. World J Diabetes 4:92–100CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wu Y, Huang M, Zhao P, Yang X (2013) Vanadyl acetylacetonate upregulates PPAR gamma and adiponectin expression in differentiated rat adipocytes. J Biol Inorg Chem JBIC 18:623–631CrossRefPubMedGoogle Scholar
  26. 26.
    Gioda CR, de Oliveira Barreto T, Primola-Gomes TN et al (2010) Cardiac oxidative stress is involved in heart failure induced by thiamine deprivation in rats. Am J Physiol Heart Circ Physiol 298:H2039–H2045CrossRefPubMedGoogle Scholar
  27. 27.
    Lima LF, Leite HP, Taddei JA (2011) Low blood thiamine concentrations in children upon admission to the intensive care unit: risk factors and prognostic significance. Am J Clin Nutr 93:57–61CrossRefPubMedGoogle Scholar
  28. 28.
    Costa NA, Gut AL, de Souza Dorna M et al (2014) Serum thiamine concentration and oxidative stress as predictors of mortality in patients with septic shock. J Crit Care 29:249–252CrossRefPubMedGoogle Scholar
  29. 29.
    Berger MM, Oudemans-van Straaten HM (2015) Vitamin C supplementation in the critically ill patient. Curr Opin Clin Nutr Metab Care 18:193–201CrossRefPubMedGoogle Scholar
  30. 30.
    Oudemans-van Straaten HM, Man A, de Waard MC (2014) Vitamin C revisited. Crit Care 18:460CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Long CL, Maull KI, Krishnan RS et al (2003) Ascorbic acid dynamics in the seriously ill and injured. J Surg Res 109:144–148CrossRefPubMedGoogle Scholar
  32. 32.
    de Grooth HM, Spoelstra-de Man AME, Oudemans-van Straaten HM (2014) Early plasma vitamin C concentration, organ dysfunction and ICU mortality. Abstract. Intens Care Med 40Google Scholar
  33. 33.
    Rizzoli R (2014) Nutritional aspects of bone health. Best Pract Res Clin Endocrinol Metab 28:795–808CrossRefPubMedGoogle Scholar
  34. 34.
    Zajic P, Amrein K (2014) Vitamin D deficiency in the ICU: a systematic review. Minerva Endocrinol 39:275–287PubMedGoogle Scholar
  35. 35.
    Amrein K, Venkatesh B (2012) Vitamin D and the critically ill patient. Curr Opin Clin Nutr Metab Care 15:188–193CrossRefPubMedGoogle Scholar
  36. 36.
    Moraes RB, Friedman G, Wawrzeniak IC et al (2015) Vitamin D deficiency is independently associated with mortality among critically ill patients. Clinics (Sao Paolo) 70:326–332CrossRefGoogle Scholar
  37. 37.
    Borum PR (2009) Carnitine in parenteral nutrition. Gastroenterology 137:S129–S134CrossRefPubMedGoogle Scholar
  38. 38.
    Hatamkhani S, Karimzadeh I, Elyasi S, Farsaie S, Khalili H (2013) Carnitine and sepsis: a review of an old clinical dilemma. J Pharm Pharm Sci 16:414–423PubMedGoogle Scholar
  39. 39.
    Vanek VW, Borum P, Buchman A et al (2012) A.S.P.E.N. Position paper: recommendations for changes in commercially available parenteral multivitamin and multi–trace element products. Nutr Clin Pract Off Publ Am Soc Parenter Enteral Nutr 27:440–491CrossRefGoogle Scholar
  40. 40.
    Buchman AL (2009) The addition of choline to parenteral nutrition. Gastroenterology 137:S119–S128CrossRefPubMedGoogle Scholar
  41. 41.
    Singer P, Berger MM, Van den Berghe G et al (2009) ESPEN guidelines on parenteral nutrition: intensive care. Clin Nutr 28:387–400CrossRefPubMedGoogle Scholar
  42. 42.
    Collier BR, Giladi A, Dossett LA, Dyer L, Fleming SB, Cotton BA (2008) Impact of high-dose antioxidants on outcomes in acutely injured patients. JPEN J Parenter Enteral Nutr 32:384–388CrossRefPubMedGoogle Scholar
  43. 43.
    Berger MM, Soguel L, Shenkin A et al (2008) Influence of early antioxidant supplements on clinical evolution and organ function in critically ill cardiac surgery, major trauma and subarachnoid hemorrhage patients. Crit Care 12:R101CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Barbosa E, Faintuch J, Machado Moreira EA et al (2009) Supplementation of vitamin E, vitamin C, and zinc attenuates oxidative stress in burned children: a randomized, double-blind, placebo-controlled pilot study. J Burn Care Res 30:859–866CrossRefPubMedGoogle Scholar
  45. 45.
    Alhazzani W, Jacobi J, Sindi A et al (2013) The effect of selenium therapy on mortality in patients with sepsis syndrome: a systematic review and meta-analysis of randomized controlled trials. Crit Care Med 41:1555–1564CrossRefPubMedGoogle Scholar
  46. 46.
    Manzanares W, Dhaliwal R, Jiang X, Murch L, Heyland DK (2012) Antioxidant micronutrients in the critically ill: a systematic review and meta-analysis. Crit Care 16:R66CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Jeejeebhoy KN (2007) Human zinc deficiency. Nutr Clin Pract 22:65–67CrossRefPubMedGoogle Scholar
  48. 48.
    Scrimshaw NS, SanGiovanni JP (1997) Synergism of nutrition, infection, and immunity – an overview. Am J Clin Nutr 66:464S–477SPubMedGoogle Scholar
  49. 49.
    Pieracci FM, Henderson P, Rodney JR et al (2009) Randomized, double-blind, placebo-controlled trial of effects of enteral iron supplementation on anemia and risk of infection during surgical critical illness. Surg Infect (Larchmt) 10:9–19CrossRefGoogle Scholar
  50. 50.
    Fowler AA 3rd, Syed AA, Knowlson S et al (2014) Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med 12:32CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Tanaka H, Matsuda T, Miyagantani Y, Yukioka T, Matsuda H, Shimazaki S (2000) Reduction of resuscitation fluid volumes in severely burned patients using ascorbic acid administration. Arch Surg 135:326–331CrossRefPubMedGoogle Scholar
  52. 52.
    Amrein K, Schnedl C, Holl A et al (2014) Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the VITdAL-ICU randomized clinical trial. JAMA 312:1520–1530CrossRefPubMedGoogle Scholar
  53. 53.
    Amrein K, Sourij H, Wagner G et al (2011) Short-term effects of high-dose oral vitamin D3 in critically ill vitamin D deficient patients: a randomized, double-blind, placebo-controlled pilot study. Crit Care 15:R104CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Gottschlich MM, Mayes T, Khoury J, Warden GD (2004) Hypovitaminosis D in acutely injured pediatric burn patients. J Am Diet Assoc 104:931–941; quiz 1031CrossRefPubMedGoogle Scholar
  55. 55.
    Klein GL, Holick MF, Langman CB, Celis MM, Herndon DN (2004) Synthesis of vitamin D in skin after burns. Lancet 363:291–292CrossRefPubMedGoogle Scholar
  56. 56.
    Rousseau AF, Damas P, Ledoux D, Cavalier E (2014) Effect of cholecalciferol recommended daily allowances on vitamin D status and fibroblast growth factor-23: an observational study in acute burn patients. Burns 40:865–870CrossRefPubMedGoogle Scholar
  57. 57.
    Rousseau AF, Damas P, Ledoux D et al (2015) Vitamin D status after a high dose of cholecalciferol in healthy and burn subjects. Burns 41:1028–1034CrossRefPubMedGoogle Scholar
  58. 58.
    McNally JD, Iliriani K, Pojsupap S et al (2015) Rapid normalization of vitamin D levels: a meta-analysis. Pediatrics 135:e152–e166CrossRefPubMedGoogle Scholar
  59. 59.
    Berger MM, Shenkin A (2006) Vitamins and trace elements: practical aspects of supplementation. Nutrition 22:952–955CrossRefPubMedGoogle Scholar
  60. 60.
    Jacobson S, Wester PO (1977) Balance study of twenty trace elements during total parenteral nutrition in man. Br J Nutr 37:107–126CrossRefPubMedGoogle Scholar
  61. 61.
    Buchman AL, Howard LJ, Guenter P, Nishikawa RA, Compher CW, Tappenden KA (2009) Micronutrients in parenteral nutrition: too little or too much? The past, present, and recommendations for the future. Gastroenterology 137:S1–S6CrossRefPubMedGoogle Scholar
  62. 62.
    Shenkin A (2008) Basics in clinical nutrition: trace elements and vitamins in parenteral and enteral nutrition. e-SPEN e293–7Google Scholar
  63. 63.
    Bailay LB, Baumgartner TG, Borum PR et al (1997) Clinical guide to parenteral micronutrition, 3rd edn, pp. 271–395, and 403–620Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Service de Médecine Intensive Adulte et BrûlésUniversity Hospital CHUVLausanneSwitzerland

Personalised recommendations