Skip to main content

Measure Quantifier in Monadic Second Order Logic

  • Conference paper
  • First Online:
Logical Foundations of Computer Science (LFCS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9537))

Included in the following conference series:

Abstract

We study the extension of Monadic Second Order logic with the “for almost all” quantifier \(\forall ^{=1}\) whose meaning is, informally, that \(\forall ^{=1}X.\phi (X)\) holds if \(\phi (X)\) holds almost surely for a randomly chosen X. We prove that the theory of \(\mathrm {MSO}+\forall ^{=1}\) is undecidable both when interpreted on \((\omega ,<)\) and the full binary tree. We then identify a fragment of \(\mathrm {MSO}+\forall ^{=1}\), denoted by \(\mathrm {MSO}+\forall ^{=1}_\pi \), and reduce some interesting problems in computer science and mathematical logic to the decision problem of \(\mathrm {MSO}+ \forall ^{=1}_\pi \). The question of whether \(\mathrm {MSO}+\forall ^{=1}_\pi \) is decidable is left open.

H. Michalewski—Author supported by Poland’s National Science Centre grant no. 2012/07/D/ST6/02443

M. Mio—Author supported by grant “Projet Émergent PMSO” of the École Normale Supérieure de Lyon and Poland’s National Science Centre grant no. 2014-13/B/ST6/03595.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See [15] for an overview of Friedman’s research.

  2. 2.

    Further open problems regarding \(\mathrm {MSO}+\forall ^{=1}_\pi \) are formulated in Sect. 8.

  3. 3.

    As observed in [1, Remark 7.3], a proof of Theorem 2 can be derived from the decidability of a similar problem for finite probabilistic automata obtained by Gimbert and Oualhadj in [7, Theorem 4]. In [7, Proposition 2] the authors notice that the problem remains undecidable even if all probabilities appearing in the automaton belongs to \(\{0,\frac{1}{4},\frac{2}{4},\frac{3}{4},1\}\).

  4. 4.

    In fact, following the work of [16], the logic pCTL* is also definable in a weaker logic such as Thomas’ chain logic extended with the quantifier \(\forall ^{=1}_\pi \).

  5. 5.

    Result announced by Scott during a seminar entitled “Mixing Modality and Probability” given in Edinburgh, June 2010.

References

  1. Baier, C., Grösser, M., Bertrand, N.: Probabilistic \(\omega \)-automata. J. ACM 59(1), 1 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  3. Bojanczyk, M., Gogacz, T., Michalewski, H., Skrzypczak, M.: On the decidability of MSO+U on infinite trees. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 50–61. Springer, Heidelberg (2014)

    Google Scholar 

  4. Brázdil, T., Forejt, V., Kretínský, J., Kucera, A.: The satisfiability problem for probabilistic CTL. In: Proceedings of LICS, pp. 391–402 (2008)

    Google Scholar 

  5. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Logic, Methodology and Philosophy of Science, Proceedings, pp. 1–11. American Mathematical Society (1962)

    Google Scholar 

  6. Carayol, A., Haddad, A., Serre, O.: Randomization in automata on infinite trees. ACM Trans. Comput. Logic 15(3), 24 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gimbert, H., Oualhadj, Y.: Probabilistic automata on finite words: decidable and undecidable problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 527–538. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Gogacz, T., Michalewski, H., Mio, M., Skrzypczak, M.: Measure properties of game tree languages. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 303–314. Springer, Heidelberg (2014)

    Google Scholar 

  9. Kechris, A.S.: Classical Descriptive Set Theory. Springer Verlag, New York (1994)

    MATH  Google Scholar 

  10. Lando, T.A.: Completeness of S4 for the lebesgue measure algebra. J. Philos. Logic (2010)

    Google Scholar 

  11. McKinsey, J.C.C., Tarski, A.: The algebra of topology. Ann. Math. (1944)

    Google Scholar 

  12. Michalewski, H., Mio, M.: Baire category quantifier in monadic second order logic. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 362–374. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  13. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. Am. Math. Soc. 141, 1–35 (1969)

    MathSciNet  MATH  Google Scholar 

  14. Robinson, R.M.: Restricted set-theoretical definitions in arithmetic. Proc. Amer. Math. Soc. 9, 238–242 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  15. Steinhorn, C.I.: Borel Structures and Measure and Category Logics. In: Model-theoretic logics. Perspectives in Mathematical Logic, vol. 8, Chap. XVI. Springer-Verlag, New York (1985). http://projecteuclid.org/euclid.pl/1235417282

  16. Thomas, W.: On chain logic, path logic, and first-order logic over infinite trees. In: Proceedings of LICS, pp. 245–256 (1987)

    Google Scholar 

  17. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 389–455. Springer, Berlin (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Mio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Michalewski, H., Mio, M. (2016). Measure Quantifier in Monadic Second Order Logic. In: Artemov, S., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2016. Lecture Notes in Computer Science(), vol 9537. Springer, Cham. https://doi.org/10.1007/978-3-319-27683-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27683-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27682-3

  • Online ISBN: 978-3-319-27683-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics