Advertisement

Density Difference Detection with Application to Exploratory Visualization

  • Marko RakEmail author
  • Tim König
  • Johannes Steffen
  • Dirk Joachim Lehmann
  • Klaus-Dietz Tönnies
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9493)

Abstract

Identifying differences among the distribution of samples of different observations is an important issue in many research fields. We provide a general framework to detect these difference spots in d-dimensional feature space. Such spots occur not only at various locations, they may also come in various shapes and multiple sizes, even at the same location. We address these challenges by a scale-space representation of the density function difference of the observations in feature space. Using three classification scenarios from UCI Machine Learning Repository we show that interest spots carry valuable information about a data set. To this end, we establish a simple decision rule on top of our framework. Results indicate state-of-the-art performance, underpinning the importance of the information that is carried by the detected spots. Furthermore, we outline that the output of our framework can be used to guide exploratory visualization of high-dimensional feature spaces.

Keywords

Density difference Kernel density estimation Scale space Dendrogram Blob detection Affine shape adaption Exploratory visualization Orthographic star coordinates 

Notes

Acknowledgements

This research was partially funded by the project “Visual Analytics in Public Health” (TO 166/13-2) of the German Research Foundation.

References

  1. 1.
    Abbass, H.A.: An evolutionary artificial neural networks approach for breast cancer diagnosis. Artif. Intell. Med. 25, 265–281 (2002)CrossRefGoogle Scholar
  2. 2.
    Adal, K.M., Sidibe, D., Ali, S., Chaum, E., Karnowski, T.P., Meriaudeau, F.: Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning. Comput. Methods Programs Biomed. 114, 1–10 (2014)CrossRefGoogle Scholar
  3. 3.
    Babaud, J., Witkin, A.P., Baudin, M., Duda, R.O.: Uniqueness of the gaussian kernel for scale-space filtering. IEEE Trans. Pattern Anal. Mach. Intell. 8, 26–33 (1986)CrossRefzbMATHGoogle Scholar
  4. 4.
    Berthonnaud, E., Dimnet, J., Roussouly, P., Labelle, H.: Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters. J. Spinal Disord. Tech. 18, 40–47 (2005)CrossRefGoogle Scholar
  5. 5.
    Bretzner, L., Lindeberg, T.: Feature tracking with automatic selection of spatial scales. Comput. Vis. Image Underst. 71, 385–392 (1998)CrossRefGoogle Scholar
  6. 6.
    Duong, T., Hazelton, M.L.: Plug-in bandwidth matrices for bivariate kernel density estimation. J. Nonparametric Stat. 15, 17–30 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Duong, T., Hazelton, M.L.: Cross-validation bandwidth matrices for multivariate kernel density estimation. Scand. J. Stat. 32, 485–506 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1627–1645 (2010)CrossRefGoogle Scholar
  9. 9.
    Glock, S., Gillich, E., Schaede, J., Lohweg, V.: Feature extraction algorithm for banknote textures based on incomplete shift invariant wavelet packet transform. In: Denzler, J., Notni, G., Süße, H. (eds.) Pattern Recognition. LNCS, vol. 5748, pp. 422–431. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  10. 10.
    Lakemond, R., Sridharan, S., Fookes, C.: Hessian-based affine adaptation of salient local image features. J. Math. Imaging Vis. 44, 150–167 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lehmann, D.J., Theisel, H.: Orthographic star coordinates. IEEE Trans. Vis. Comput. Graph. 19, 2615–2624 (2013)CrossRefGoogle Scholar
  12. 12.
    Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 465–470 (1996)Google Scholar
  13. 13.
    Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30, 79–116 (1998)CrossRefGoogle Scholar
  14. 14.
    Lindeberg, T., Garding, J.: Shape-adapted smoothing in estimation of 3-d depth cues from affine distortions of local 2-d brightness structure. Eur. Conf. Comput. Vis. 800, 389–400 (1994)Google Scholar
  15. 15.
    Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int. J. Comput. Vis. 60, 63–86 (2004)CrossRefGoogle Scholar
  16. 16.
    Rak, M., König, T., Tönnies, K.D.: Spotting differences among observations. In: International Conference on Pattern Recognition Applications and Methods, pp. 5–13 (2015)Google Scholar
  17. 17.
    da Rocha Neto, A.R.: A.R., Barreto, G.A.: On the application of ensembles of classifiers to the diagnosis of pathologies of the vertebral column: A comparative analysis. IEEE Lat. Am. Trans. 7, 487–496 (2009)CrossRefGoogle Scholar
  18. 18.
    da Rocha Neto, A.R., Sousa, R., de A. Barreto, G., Cardoso, J.S.: Diagnostic of pathology on the vertebral column with embedded reject option. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds.) IbPRIA 2011. LNCS, vol. 6669, pp. 588–595. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  19. 19.
    Sain, S.R., Baggerly, K.A., Scott, D.W.: Cross-validation of multivariate densities. J. Am. Stat. Assoc. 89, 807–817 (1992)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Seyedhosseini, M., Kumar, R., Jurrus, E., Giuly, R., Ellisman, M., Pfister, H., Tasdizen, T.: Detection of neuron membranes in electron microscopy images using multi-scale context and Radon-like features. Int. Conf. Med. Image Comput. Comput. Assist. Intervention 6891, 670–677 (2011)Google Scholar
  21. 21.
    Wand, M.P., Jones, M.C.: Multivariate plug-in bandwidth selection. Comput. Stat. 9, 97–116 (1994)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Wolberg, W., Mangasarian, O.: Multisurface method of pattern separation for medical diagnosis applied to breast cytology. In: National Academy of Sciences, pp. 9193–9196 (1990)Google Scholar
  23. 23.
    Yi, C., Tian, Y.: Text string detection from natural scenes by structure-based partition and grouping. IEEE Trans. Image Process. 20, 2594–2605 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Yuille, A.L., Poggio, T.A.: Scaling theorems for zero crossings. IEEE Trans. Pattern Anal. Mach. Intell. 8, 15–25 (1986)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marko Rak
    • 1
    Email author
  • Tim König
    • 1
  • Johannes Steffen
    • 1
  • Dirk Joachim Lehmann
    • 1
  • Klaus-Dietz Tönnies
    • 1
  1. 1.Department of Simulation and GraphicsOtto von Guericke UniversityMagdeburgGermany

Personalised recommendations