International Conference on Multimedia Modeling

MultiMedia Modeling pp 412-417 | Cite as

Faceted Navigation for Browsing Large Video Collection

  • Zhenxing Zhang
  • Wei Li
  • Cathal Gurrin
  • Alan F. Smeaton
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9517)

Abstract

This paper presents a content-based interactive video browsing system, developed for the Video Browser Showdown 2016, with the aim of supporting a user to find specific video clips from a large video collection under time constraints. Since the target of this evaluation forum is to evaluate and demonstrate the development of interactive video search tools, we focus on known-item search tasks, rather than query-by-example or query-by-text approaches for large-scale image/video retrieval. In this paper, we describe an interactive video retrieval system which employs the concept filters and faceted navigation to aid users quickly and intuitively locate the interested content when browsing in a large video collections based on automatically extracted semantic concepts, object labels and attributes from video content.

Keywords

Multimedia information retrieval Faceted navigation 

References

  1. 1.
    Schoeffmann, K.: A user-centric media retrieval competition: the video browser showdown 2012–2014. IEEE Multimedia 21(4), 8–13 (2014)CrossRefGoogle Scholar
  2. 2.
    Zhang, Z., Albatal, R., Gurrin, C., Smeaton, A.F.: Interactive known-item search using semantic textual and colour modalities. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.) MMM 2015, Part II. LNCS, vol. 8936, pp. 282–286. Springer, Heidelberg (2015) Google Scholar
  3. 3.
    Blažek, A., Lokoč, J., Matzner, F., Skopal, T.: Enhanced signature-based video browser. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.) MMM 2015, Part II. LNCS, vol. 8936, pp. 243–248. Springer, Heidelberg (2015) Google Scholar
  4. 4.
    Hearst, M.A. : UIs for faceted navigation: recent advances and remaining open problems. In: The Workshop on Computer Interaction and Information Retrieval, HCIR 2008 (2008)Google Scholar
  5. 5.
    Pickering, M.J., Ruger, S.M.: Evaluation of key frame-based retrieval techniques for video. Comput. Vis. Image Underst. 92(2–3), 217–235 (2003)CrossRefGoogle Scholar
  6. 6.
    Zhang, Z., Albatal, R., Gurrin, C., Smeaton, A.F.: TRECVid 2013 experiments at Dublin city University. In: TREC Video Retrieval Evaluation (2013)Google Scholar
  7. 7.
    Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (2014)Google Scholar
  8. 8.
    Guadarrama, S., Rodner, E., Saenko, K., Zhang, N., Farrell, R., Donahue J., Darrell, T.: Open-vocabulary object retrieval. In: Robotics: Science and Systems (2014)Google Scholar
  9. 9.
    Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Advances in Neural Information Processing Systems 27 (2014)Google Scholar
  10. 10.
    Patterson, G., Xu, C., Su, H., Hays, J.: The SUN attribute database: beyond categories for deeper scene understanding. Int. J. Comput. Vis. 108(1), 59–81 (2014)CrossRefGoogle Scholar
  11. 11.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: ACM MM Open Source Competition (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Zhenxing Zhang
    • 1
  • Wei Li
    • 1
  • Cathal Gurrin
    • 1
  • Alan F. Smeaton
    • 1
  1. 1.School of Computing, Insight Centre for Data AnalyticsDublin City UniversityGlasnevin, Co. DublinIreland

Personalised recommendations