International Conference on Multimedia Modeling

MultiMedia Modeling pp 632-641 | Cite as

Symmetry-Aware Human Shape Correspondence Using Skeleton

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9516)

Abstract

In this paper, we propose a symmetry-aware human shape correspondence extraction method. We address the symmetric flip problem which exists in establishing correspondences for intrinsically symmetric models and improve the accuracy of the final corresponding pairs. To achieve this goal, we extended the state-of-the-art approach by using skeleton information to further remove symmetric flipped shape correspondences. Traditional approaches that only rely on surface geometry information can hardly discriminate surface points which are symmetric. With the appearance of inexpensive RGB-D camera, such as Kinect, skeleton information can be easily obtained along with mesh. Therefore, after the initial correspondences are achieved, we extend the candidate sets for each point on the template, followed by making use of skeleton to remove the symmetric flipped false candidates. In the remaining candidates, final correspondences are achieved by choosing those with minimum geodesic distortion from base vertex set, which is formed by sampling on the mesh. Experiments demonstrate that the proposed method can effectively remove all the symmetric flipped candidates. Moreover, the final correspondence pair is more accurate than those of the state of the arts.

Keywords

Kinect Shape correspondence Symmetric flip problem 

References

  1. 1.
    Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. ACM Trans. Graph. (TOG) 24, 408–416 (2005). ACMCrossRefGoogle Scholar
  2. 2.
    Baran, I., Popović, J.: Automatic rigging and animation of 3d characters. ACM Trans. Graph. (TOG) 26, 72 (2007). ACMCrossRefGoogle Scholar
  3. 3.
    Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1704–1711. IEEE (2010)Google Scholar
  4. 4.
    Davis, J., Marschner, S.R., Garr, M., Levoy, M.: Filling holes in complex surfaces using volumetric diffusion. In: Proceedings of the First International Symposium on 3D Data Processing Visualization and Transmission, pp. 428–441. IEEE (2002)Google Scholar
  5. 5.
    Dey, T.K., Fu, B., Wang, H., Wang, L.: Automatic posing of a meshed human model using point clouds. Comput. Graph. 46, 14–24 (2015)CrossRefGoogle Scholar
  6. 6.
    Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1285–1295 (2003)CrossRefGoogle Scholar
  7. 7.
    Jain, V., Zhang, H.: Robust 3d shape correspondence in the spectral domain. In: IEEE International Conference on Shape Modeling and Applications, SMI 2006, pp. 19–19. IEEE (2006)Google Scholar
  8. 8.
    Jiang, W., Xu, K., Cheng, Z.Q., Zhang, H.: Skeleton-based intrinsic symmetry detection on point clouds. Graph. Models 75(4), 177–188 (2013)CrossRefGoogle Scholar
  9. 9.
    Körtgen, M., Park, G.J., Novotni, M., Klein, R.: 3d shape matching with 3d shape contexts. In: The 7th Central European Seminar on Computer Graphics, vol. 3, pp. 5–17 (2003)Google Scholar
  10. 10.
    Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L.: One point isometric matching with the heat kernel. Comput. Graph. Forum 29, 1555–1564 (2010). Wiley Online LibraryCrossRefGoogle Scholar
  11. 11.
    Ovsjanikov, M., Mérigot, Q., Pătrăucean, V., Guibas, L.: Shape matching via quotient spaces. Comput. Graph. Forum 32, 1–11 (2013). Wiley Online LibraryCrossRefGoogle Scholar
  12. 12.
    Rugis, J., Klette, R.: Surface curvature extraction for 3d image analysis or surface renderingGoogle Scholar
  13. 13.
    Rustamov, R.M.: Laplace-beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, pp. 225–233. Eurographics Association (2007)Google Scholar
  14. 14.
    Sahillioğlu, Y., Yemez, Y.: 3d shape correspondence by isometry-driven greedy optimization. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 453–458. IEEE (2010)Google Scholar
  15. 15.
    Sahillioglu, Y., Yemez, Y.: Minimum-distortion isometric shape correspondence using em algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2203–2215 (2012)CrossRefGoogle Scholar
  16. 16.
    Sahillioğlu, Y., Yemez, Y.: Coarse-to-fine isometric shape correspondence by tracking symmetric flips. Comput. Graph. Forum 32, 177–189 (2013). Wiley Online LibraryCrossRefGoogle Scholar
  17. 17.
    Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28, 1383–1392 (2009). Wiley Online LibraryCrossRefGoogle Scholar
  18. 18.
    Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature detection and description with applications to mesh matching. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 373–380. IEEE (2009)Google Scholar
  19. 19.
    Zhang, Z., Yin, K., Foong, K.W.: Symmetry robust descriptor for non-rigid surface matching. Comput. Graph. Forum 32, 355–362 (2013). Wiley Online LibraryCrossRefGoogle Scholar
  20. 20.
    Zheng, Q., Hao, Z., Huang, H., Xu, K., Zhang, H., Cohen-Or, D., Chen, B.: Skeleton-intrinsic symmetrization of shapes. Comput. Graph. Forum 34, 275–286 (2015). Wiley Online LibraryCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Queen Mary University of LondonLondonUK

Personalised recommendations