Abstract
Most of the image retrieval approaches nowadays are based on the Bag-of-Words (BoW) model, which allows for representing an image efficiently and quickly. The efficiency of the BoW model is related to the efficiency of the visual vocabulary. In general, visual vocabularies are created by clustering all available visual features, formulating specific patterns. Clustering techniques are k-means oriented and they are replaced by approximate k-means methods for very large datasets. In this work, we propose a faster construction of visual vocabularies compared to the existing method in the case of SIFT descriptors, based on our observation that the values of the 128-dimensional SIFT descriptors follow the exponential distribution. The application of our method to image retrieval in specific image datasets showed that the mean Average Precision is not reduced by our approximation, despite that the visual vocabulary has been constructed significantly faster compared to the state of the art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
References
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)
Devroye, L.: Sample-based non-uniform random variate generation. In: Proceedings of the 18th Conference on Winter Simulation, pp. 260–265. ACM, December 1986
Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3304–3311. IEEE, June 2010
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Luo, Q., Zhang, S., Huang, T., Gao, W., Tian, Q.: Superimage: packing semantic-relevant images for indexing and retrieval. In: Proceedings of International Conference on Multimedia Retrieval, p. 41. ACM, April 2014
Mikolajczyk, K., Leibe, B., Schiele, B.: Multiple object class detection with a generative model. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 26–36. IEEE, June 2006
Mikulik, A., Chum, O., Matas, J.: Image retrieval for online browsing in large image collections. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 3–15. Springer, Heidelberg (2013)
Moise, D., Shestakov, D., Gudmundsson, G., Amsaleg, L.: Indexing and searching 100 M images with map-reduce. In: Proceedings of the 3rd ACM Conference on International Conference on Multimedia Retrieval, pp. 17–24. ACM, April 2013
Philbin, J.: Scalable object retrieval in very large image collections. Doctoral dissertation, Oxford University (2010)
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE, June 2007
Rawlings, J.O., Pantula, S.G., Dickey, D.A.: Applied Regression Analysis: a Research Tool. Springer Science & Business Media, New York (1998)
Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: Ninth IEEE International Conference on Computer Vision, Proceedings, pp. 1470–1477. IEEE, October 2003
Acknowledgements
This work was supported by the projects MULTISENSOR (FP7-610411) and KRISTINA (H2020-645012), funded by the European Commission.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Gialampoukidis, I., Vrochidis, S., Kompatsiaris, I. (2016). Fast Visual Vocabulary Construction for Image Retrieval Using Skewed-Split k-d Trees. In: Tian, Q., Sebe, N., Qi, GJ., Huet, B., Hong, R., Liu, X. (eds) MultiMedia Modeling. MMM 2016. Lecture Notes in Computer Science(), vol 9516. Springer, Cham. https://doi.org/10.1007/978-3-319-27671-7_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-27671-7_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27670-0
Online ISBN: 978-3-319-27671-7
eBook Packages: Computer ScienceComputer Science (R0)