Advertisement

Elastic Edge Boxes for Object Proposal on RGB-D Images

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9516)

Abstract

Object proposal is utilized as a fundamental preprocessing of various multimedia applications by detecting the candidate regions of objects in images. In this paper, we propose a novel object proposal method, named elastic edge boxes, integrating window scoring and grouping strategies and utilizing both color and depth cues in RGB-D images. We first efficiently generate the initial bounding boxes by edge boxes, and then adjust them by grouping the super-pixels within elastic range. In bounding boxes adjustment, the effectiveness of depth cue is explored as well as color cue to handle complex scenes and provide accurate box boundaries. To validate the performance, we construct a new RGB-D image dataset for object proposal with the largest size and balanced object number distribution. The experimental results show that our method can effectively and efficiently generate the bounding boxes with accurate locations and it outperforms the state-of-the-art methods considering both accuracy and efficiency.

Keywords

Elastic edge boxes Object proposal RGB-D image 

Notes

Acknowledgments

This work is supported by the National Science Foundation of China (61321491, 61202320), Research Project of Excellent State Key Laboratory (61223003), National Undergraduate Innovation Project (G1410284074) and Collaborative Innovation Center of Novel Software Technology and Industrialization.

References

  1. 1.
    Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2189–2202 (2012)CrossRefGoogle Scholar
  2. 2.
    Li, T., Chang, H., Wang, M., Ni, B., Hong, R., Yan, S.: Crowded scene analysis: a survey. IEEE Trans. Circ. Syst. Video Technol. 25(3), 367–386 (2015)CrossRefGoogle Scholar
  3. 3.
    Sang, J., Changsheng, X., Liu, J.: User-aware image tag refinement via ternary semantic analysis. IEEE Trans. Multimedia 14(3–2), 883–895 (2012)CrossRefGoogle Scholar
  4. 4.
    Xu, X., Geng, W., Ju, R., Yang, Y., Ren, T., Wu, G.: OBSIR: object-based stereo image retrieval. In: IEEE International Conference on Multimedia and Expo, pp. 1–6 (2014)Google Scholar
  5. 5.
    Bao, B.-K., Liu, G., Hong, R., Yan, S., Changsheng, X.: General subspace learning with corrupted training data via graph embedding. IEEE Trans. Image Process. 22(11), 4380–4393 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hong, C., Zhu, J., Yu, J., Cheng, J., Chen, X.: Realtime and robust object matching with a large number of templates. Multimedia Tools Appl., 1–22 (2014)Google Scholar
  7. 7.
    Ren, T., Qiu, Z., Liu, Y., Tong, Y., Bei, J.: Soft-assigned bag of features for object tracking. Multimedia Syst. 21(2), 189–205 (2015)CrossRefGoogle Scholar
  8. 8.
    Tang, J., Tao, D., Qi, G.-J., Huet, B.: Social media mining and knowledge discovery. Multimedia Syst. 20(6), 633–634 (2014)CrossRefGoogle Scholar
  9. 9.
    Hosang, J., Benenson, R., Dollár, P., Schiele, B.: What makes for effective detection proposals? arXiv preprint. arXiv:1502.05082 (2015)
  10. 10.
    Chen, X., Ma, H., Wang, X., Zhao, Z.: Improving object proposals with multi-thresholding straddling expansion. In: IEEE Conference on Computer Vision and Pattern Recognition (2015)Google Scholar
  11. 11.
    Xu, X., Ge, L., Ren, T., Wu, G.: Adaptive integration of depth and color for objectness estimation. In: IEEE International Conference on Multimedia and Expo (2015)Google Scholar
  12. 12.
    Cheng, M.-M., Zhang, Z., Lin, W.-Y., Torr, P.: BING: Binarized normed gradients for objectness estimation at 300fps. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3286–3293 (2014)Google Scholar
  13. 13.
    Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 391–405. Springer, Heidelberg (2014) Google Scholar
  14. 14.
    Carreira, J., Sminchisescu, C.: Constrained parametric min-cuts for automatic object segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3241–3248 (2010)Google Scholar
  15. 15.
    Humayun, A., Li, F., Rehg, J.M.: Rigor: reusing inference in graph cuts for generating object regions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 336–343 (2014)Google Scholar
  16. 16.
    Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)CrossRefGoogle Scholar
  17. 17.
    Rantalankila, P., Kannala, J., Rahtu, E.: Generating object segmentation proposals using global and local search. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2417–2424 (2014)Google Scholar
  18. 18.
    Xiao, Y., Lu, C., Tsougenis, E., Lu, Y., Tang, C.-K.: Complexity-adaptive distance metric for object proposals generation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 778–786 (2015)Google Scholar
  19. 19.
    Wang, C., Zhao, L., Liang, S., Zhang, L., Jia, J., Wei, Y.: Object proposal by multi-branch hierarchical segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (2015)Google Scholar
  20. 20.
    Manen, S., Guillaumin, M., Van Gool, L.: Prime object proposals with randomized prims algorithm. In: IEEE International Conference on Computer Vision, pp. 2536–2543 (2013)Google Scholar
  21. 21.
    Long, C., Wang, X., Hua, G., Yang, M., Lin, Y.: Accurate object detection with location relaxation and regionlets re-localization. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9003, pp. 260–275. Springer, Heidelberg (2015) Google Scholar
  22. 22.
    Arbelaez, P., Pont-Tuset, J., Barron, J., Marques, F., Malik, J.: Multiscale combinatorial grouping. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 328–335 (2014)Google Scholar
  23. 23.
    Krähenbühl, P., Koltun, V.: Geodesic object proposals. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 725–739. Springer, Heidelberg (2014) Google Scholar
  24. 24.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
  25. 25.
    Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2432–2439 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.State Key Laboratory for Novel Software TechnologyNanjing UniversityNanjingChina
  2. 2.Software InstituteNanjing UniversityNanjingChina

Personalised recommendations