Compound Figure Separation Combining Edge and Band Separator Detection

  • Mario TaschwerEmail author
  • Oge Marques
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9516)


We propose an image processing algorithm to automatically separate compound figures appearing in scientific articles. We classify compound images into two classes and apply different algorithms for detecting vertical and horizontal separators to each class: the edge-based algorithm aims at detecting visible edges between subfigures, whereas the band-based algorithm tries to detect whitespace separating subfigures (separator bands). The proposed algorithm has been evaluated on two datasets for compound figure separation (CFS) in the biomedical domain and compares well to semi-automatic or more comprehensive state-of-the-art approaches. Additional experiments investigate CFS effectiveness and classification accuracy of various classifier implementations.


Support Vector Machine Separator Line Meta Class Horizontal Separation Compound Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Sameer Antani (NLM) and the authors of [1] for providing their compound figure separation dataset for evaluation purposes, and Laszlo Böszörmenyi (ITEC, AAU) for valuable discussions and comments on this work.


  1. 1.
    Apostolova, E., You, D., Xue, Z., Antani, S., Demner-Fushman, D., Thoma, G.R.: Image retrieval from scientific publications: text and image content processing to separate multipanel figures. J. Assoc. Inf. Sci. Technol. 64(5), 893–908 (2013)CrossRefGoogle Scholar
  2. 2.
    Chatzichristofis, S.A., Boutalis, Y.S.: CEDD: color and edge directivity descriptor: a compact descriptor for image indexing and retrieval. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 312–322. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  3. 3.
    Chhatkuli, A., Foncubierta-Rodríguez, A., Markonis, D., Meriaudeau, F., Müller, H.: Separating compound figures in journal articles to allow for subfigure classification. In: Proceedings of the SPIE, vol. 8674, pp. 86740J–86740J-12 (2013)Google Scholar
  4. 4.
    García Seco de Herrera, A., Kalpathy-Cramer, J., Demner-Fushman, D., Antani, S., Müller, H.: Overview of the ImageCLEF 2013 medical tasks. CLEF 2013 Working Notes. CEUR Proc., vol. 1179 (2013).
  5. 5.
    García Seco de Herrera, A., Müller, H., Bromuri, S.: Overview of the ImageCLEF 2015 medical classification task. CLEF 2015 Working Notes. CEUR Proc., vol. 1391 (2015).
  6. 6.
    Kitanovski, I., Dimitrovski, I., Loskovska, S.: FCSE at medical tasks of ImageCLEF 2013. CLEF 2013 Working Notes. CEUR Proc., vol. 1179 (2013).
  7. 7.
    Santosh, K., Xue, Z., Antani, S., Thoma, G.: NLM at ImageCLEF 2015: biomedical multipanel figure separation. CLEF 2015 Working Notes. CEUR Proc., vol. 1391 (2015).
  8. 8.
    Shatkay, H., Chen, N., Blostein, D.: Integrating image data into biomedical text categorization. Bioinformatics 22(14), 446–453 (2006). CrossRefGoogle Scholar
  9. 9.
    Simpson, M.S., You, D., Rahman, M.M., Xue, Z., Demner-Fushman, D., Antani, S., Thoma, G.: Literature-based biomedical image classification and retrieval. Comput. Med. Imag. Graph. 39, 3–13 (2015)CrossRefGoogle Scholar
  10. 10.
    Taschwer, M., Marques, O.: AAUITEC at ImageCLEF 2015: Compound figure separation. CLEF 2015 Working Notes. CEUR Proc., vol. 1391 (2015).
  11. 11.
    Yuan, X., Ang, D.: A novel figure panel classification and extraction method for document image understanding. Int. J. Data Min. Bioinform. 9(1), 22–36 (2014). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.ITECKlagenfurt University (AAU)KlagenfurtAustria
  2. 2.Florida Atlantic University (FAU)Boca RatonUSA

Personalised recommendations