A Secure and Efficient Method for Scalar Multiplication on Supersingular Elliptic Curves over Binary Fields

  • Matheus F. de Oliveira
  • Marco Aurélio Amaral HenriquesEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7807)


We present a secure and efficient scalar multiplication method for supersingular elliptic curves over binary fields based on Montgomery’s ladder algorithm. Our approach uses only the x-coordinate of elliptic curve points to perform scalar multiplication, requires no precomputation and executes the same number of operations over the binary field in every iteration. When applied to projective coordinates, our method is faster than the other typical scalar multiplication methods in practical situations.


Elliptic curve cryptography Scalar multiplication Supersingular elliptic curves Binary fields Side-channel attacks 


  1. 1.
    Cohen, H., Frey, G. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press, Boca Raton (2005)Google Scholar
  2. 2.
    López, J., Dahab, R.: Fast multiplication on elliptic curves over \(GF\)(2\(^{\rm m}\)) without precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  3. 3.
    Okeya, K., Sakurai, K.: Efficient elliptic curve cryptosystems from a scalar multiplication algorithm with recovery of the \(y\)-coordinate on a montgomery-form elliptic curve. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, p. 126. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  4. 4.
    Fischer, W., Giraud, C., Knudsen, E., Seifert, J.: Parallel Scalar Multiplication on General Elliptic Curves over \(F_p\) hedged against Non-Differential Side Channel Attacks. Cryptology ePrint Archive, 2002/007 (2002).
  5. 5.
    Joye, M.: Highly regular right-to-left algorithms for scalar multiplication. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 135–147. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  6. 6.
    Saeki, M.: Elliptic Curve Cryptosystems. Master Thesis. McGill University, Montreal (1997) Google Scholar
  7. 7.
    Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Math. Comput. 48(177), 243–264 (1987)zbMATHCrossRefGoogle Scholar
  8. 8.
    Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer-Verlag New York Inc., Secaucus (2003) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Matheus F. de Oliveira
    • 1
  • Marco Aurélio Amaral Henriques
    • 1
    Email author
  1. 1.Faculty of Electrical and Computer Engineering - FEECUniversity of Campinas - UNICAMPCampinasBrazil

Personalised recommendations