Advertisement

An Ordered Multisignature Scheme Under the CDH Assumption Without Random Oracles

  • Naoto YanaiEmail author
  • Masahiro Mambo
  • Eiji Okamoto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7807)

Abstract

Ordered multisignatures are digital signatures which allow multiple signers to guarantee the signing order as well as the validity of a message, and thus are useful for constructing secure routing protocols. Although one of approaches to constructing the ordered multisignatures is to utilize aggregate signatures, there is no known scheme which is provably secure without using aggregate signatures under a reasonable complexity assumption in the standard model. In this paper we propose a provably secure ordered multisignature scheme under the CDH assumption in the standard model from scratch. Our proposed scheme has a positive property that the data size of signatures and the number of computations of bilinear maps are fixed with respect to the number of signers and the message length.

Notes

Acknowledgement

A part of this research is supported by JSPS A3 Foresight Program, and Support Center for Advanced Telecommunications Technology Research. We would like to appreciate their supports. We would also like to appreciate Shin-Akarui-Angou-Benkyou-Kai for their valuable comments.

References

  1. 1.
    Ahn, J.H., Green, M., Hohenberger, S.: Synchronized aggregate signatures: new definitions, constructions and applications. In: Proceedings of the ACM CCS 2011, pp. 473–484. ACM (2010)Google Scholar
  2. 2.
    Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  3. 3.
    Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and identity-based sequential aggregate signatures, with applications to secure routing (extended abstract). In: Proceedings of ACM CCS 2007, pp. 276–285. ACM (2007)Google Scholar
  4. 4.
    Boneh, D., Gentry, C., Lynn, B.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  5. 5.
    Chi, Y.-J., Oliveira, R., Zhang, L.: Cyclops: the as-level connectivity observatory. ACM Sigcomm Comput. Commun. Rev. 38(4), 5–16 (2008)CrossRefGoogle Scholar
  6. 6.
    Doi, H., Mambo, M., Okamoto, E.: Multisignature schemes using structured group id. Tech. Rep. IEICE 98, 43–48 (1998). IEICEGoogle Scholar
  7. 7.
    Feamster, N., Balakrishnan, H., Rexford, J.: Some foundational problems in interdomain routing. In: Proceedings of HotNets-3 2004. ACM (2004)Google Scholar
  8. 8.
    Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  9. 9.
    Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital multi-signatures. NEC Res. Dev. 71, 1–8 (1983)Google Scholar
  10. 10.
    Kanaoka, A., Okada, M., Katsuno, Y., Okamoto, E.: Probabilistic packet marking method considering topology property for efficiency re-building dos attack paths. TIPSJ 52(3), 929–939 (2011)Google Scholar
  11. 11.
    Kent, S., Lynn, C., Seo, K.: Secure border gateway protocol. IEEE J. Sel. Areas Commun. 18(4), 582–592 (2000)CrossRefGoogle Scholar
  12. 12.
    Lee, K., Lee, D.H., Yung, M.: Sequential aggregate signatures with short public keys: design, analysis and implementation studies. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 423–442. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  13. 13.
    Lepinski, M., Turner, S.L: An overview of bgpsec. Internet Draft (2011). http://tools.ietf.org/html/draft-ietf-sidr-bgpsec-overview-01
  14. 14.
    Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  15. 15.
    Lynn, B.: Pbc library (2013). http://crypto.stanford.edu/pbc/
  16. 16.
    Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended abstract. In: Proceedings of ACM CCS 2001, pp. 245–254. ACM (2001)Google Scholar
  17. 17.
    Ohta, K., Okamoto, T.: Multi-signature schemes secure against active insider attacks. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E82(A(1)), 21–31 (1999)Google Scholar
  18. 18.
    Sriram, K., Borchert, O., Kim, O., Cooper, D., Montgomery, D.: Rib size estimation for bgpsec. IETF SIDR WG Meeting, IETF 81 (2011). http://www.antd.nist.gov/ksriram/BGPSEC_RIB_Estimation.pdf
  19. 19.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  20. 20.
    Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  21. 21.
    Yanai, N., Chida, E., Mambo, M., Okamoto, E.: A cdh-based ordered multisignature scheme provably secure without random oracles. JIP 55(2), 366–375 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Graduate School of System and Information EngineeringUniversity of TsukubaTsukubaJapan
  2. 2.Institute of Science and EngineeringKanazawa UniversityKanazawaJapan

Personalised recommendations