Abstract
Wet-lab experiments, in which the dynamics within living cells are observed, are usually costly and time consuming. This is particularly true if single-cell measurements are obtained using experimental techniques such as flow-cytometry or fluorescence microscopy. It is therefore important to optimize experiments with respect to the information they provide about the system. In this paper we make a priori predictions of the amount of information that can be obtained from measurements. We focus on the case where the measurements are made to estimate parameters of a stochastic model of the underlying biochemical reactions. We propose a numerical scheme to approximate the Fisher information of future experiments at different observation time points and determine optimal observation time points. To illustrate the usefulness of our approach, we apply our method to two interesting case studies.
Keywords
- Unknown Parameter
- Fisher Information
- Fisher Information Matrix
- Observation Sequence
- Chemical Master Equation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Parameter identification for markov models of biochemical reactions. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 83–98. Springer, Heidelberg (2011)
Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Approximate maximum likelihood estimation for stochastic chemical kinetics. EURASIP J. Bioinf. Syst. Biol. 9 (2012)
Box, G.E.P., Lucas, H.L.: Design of experiments in non-linear situations. Biometrika 46(1/2), 77–90 (1959)
Burrage, K., Hegland, M., Macnamara, F., Sidje, B.: A krylov-based finite state projection algorithm for solving the chemical master equation arising in the discrete modelling of biological systems. In: Proceedings of the Markov 150th Anniversary Conference, pp. 21–38. Boson Books (2006)
Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)
Henzinger, T.A., Mateescu, M., Wolf, V.: Sliding window abstraction for infinite markov chains. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 337–352. Springer, Heidelberg (2009)
Komorowski, M., Costa, M.J., Rand, D.A., Stumpf, M.P.H.: Sensitivity, robustness, and identifiability in stochastic chemical kinetics models. Proc. Nat. Acad. Sci. 108(21), 8645–8650 (2011)
Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice Hall PTR, Upper Saddle River (1998)
Loinger, A., Lipshtat, A., Balaban, N.Q., Biham, O.: Stochastic simulations of genetic switch systems. Phys. Rev. E 75, 021904 (2007)
Mateescu, M., Wolf, V., Didier, F., Henzinger, T.A.: Fast adaptive uniformisation of the chemical master equation. IET Syst. Biol. 4(6), 441–452 (2010)
Merlé, Y., Mentré, F.: Bayesian design criteria: computation, comparison, and application to a pharmacokinetic and a pharmacodynamic model. J. Pharmacokinet. Biopharm. 23(1), 101–125 (1995)
Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124, 044144 (2006)
Pronzato, L., Walter, E.: Robust experiment design via stochastic approximation. Math. Biosci. 75(1), 103–120 (1985)
Reinker, S., Altman, R.M., Timmer, J.: Parameter estimation in stochastic biochemical reactions. IEEE Proc. Syst. Biol 153, 168–178 (2006)
Ruess, J., Milias-Argeitis, A., Lygeros, J.: Designing experiments to understand the variability in biochemical reaction networks. J. R. Soc. Interface 10(88), 20130588–20130588 (2013). arXiv:1304.1455 [q-bio]
Sidje, R., Burrage, K., MacNamara, S.: Inexact uniformization method for computing transient distributions of Markov chains. SIAM J. Sci. Comput. 29(6), 2562–2580 (2007)
van den Bos, A.: Parameter Estimation for Scientists and Engineers. Wiley-Interscience, Hoboken (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Kyriakopoulos, C., Wolf, V. (2015). Optimal Observation Time Points in Stochastic Chemical Kinetics. In: Maler, O., Halász, Á., Dang, T., Piazza, C. (eds) Hybrid Systems Biology. HSB 2014. Lecture Notes in Computer Science(), vol 7699. Springer, Cham. https://doi.org/10.1007/978-3-319-27656-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-27656-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27655-7
Online ISBN: 978-3-319-27656-4
eBook Packages: Computer ScienceComputer Science (R0)