Skip to main content

Optimal Observation Time Points in Stochastic Chemical Kinetics

Part of the Lecture Notes in Computer Science book series (LNBI,volume 7699)


Wet-lab experiments, in which the dynamics within living cells are observed, are usually costly and time consuming. This is particularly true if single-cell measurements are obtained using experimental techniques such as flow-cytometry or fluorescence microscopy. It is therefore important to optimize experiments with respect to the information they provide about the system. In this paper we make a priori predictions of the amount of information that can be obtained from measurements. We focus on the case where the measurements are made to estimate parameters of a stochastic model of the underlying biochemical reactions. We propose a numerical scheme to approximate the Fisher information of future experiments at different observation time points and determine optimal observation time points. To illustrate the usefulness of our approach, we apply our method to two interesting case studies.


  • Unknown Parameter
  • Fisher Information
  • Fisher Information Matrix
  • Observation Sequence
  • Chemical Master Equation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Parameter identification for markov models of biochemical reactions. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 83–98. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  2. Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Approximate maximum likelihood estimation for stochastic chemical kinetics. EURASIP J. Bioinf. Syst. Biol. 9 (2012)

    Google Scholar 

  3. Box, G.E.P., Lucas, H.L.: Design of experiments in non-linear situations. Biometrika 46(1/2), 77–90 (1959)

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Burrage, K., Hegland, M., Macnamara, F., Sidje, B.: A krylov-based finite state projection algorithm for solving the chemical master equation arising in the discrete modelling of biological systems. In: Proceedings of the Markov 150th Anniversary Conference, pp. 21–38. Boson Books (2006)

    Google Scholar 

  5. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    CrossRef  Google Scholar 

  6. Henzinger, T.A., Mateescu, M., Wolf, V.: Sliding window abstraction for infinite markov chains. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 337–352. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  7. Komorowski, M., Costa, M.J., Rand, D.A., Stumpf, M.P.H.: Sensitivity, robustness, and identifiability in stochastic chemical kinetics models. Proc. Nat. Acad. Sci. 108(21), 8645–8650 (2011)

    CrossRef  Google Scholar 

  8. Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice Hall PTR, Upper Saddle River (1998)

    MATH  Google Scholar 

  9. Loinger, A., Lipshtat, A., Balaban, N.Q., Biham, O.: Stochastic simulations of genetic switch systems. Phys. Rev. E 75, 021904 (2007)

    CrossRef  Google Scholar 

  10. Mateescu, M., Wolf, V., Didier, F., Henzinger, T.A.: Fast adaptive uniformisation of the chemical master equation. IET Syst. Biol. 4(6), 441–452 (2010)

    CrossRef  Google Scholar 

  11. Merlé, Y., Mentré, F.: Bayesian design criteria: computation, comparison, and application to a pharmacokinetic and a pharmacodynamic model. J. Pharmacokinet. Biopharm. 23(1), 101–125 (1995)

    CrossRef  Google Scholar 

  12. Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124, 044144 (2006)

    CrossRef  MATH  Google Scholar 

  13. Pronzato, L., Walter, E.: Robust experiment design via stochastic approximation. Math. Biosci. 75(1), 103–120 (1985)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Reinker, S., Altman, R.M., Timmer, J.: Parameter estimation in stochastic biochemical reactions. IEEE Proc. Syst. Biol 153, 168–178 (2006)

    CrossRef  Google Scholar 

  15. Ruess, J., Milias-Argeitis, A., Lygeros, J.: Designing experiments to understand the variability in biochemical reaction networks. J. R. Soc. Interface 10(88), 20130588–20130588 (2013). arXiv:1304.1455 [q-bio]

    CrossRef  Google Scholar 

  16. Sidje, R., Burrage, K., MacNamara, S.: Inexact uniformization method for computing transient distributions of Markov chains. SIAM J. Sci. Comput. 29(6), 2562–2580 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. van den Bos, A.: Parameter Estimation for Scientists and Engineers. Wiley-Interscience, Hoboken (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Charalampos Kyriakopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kyriakopoulos, C., Wolf, V. (2015). Optimal Observation Time Points in Stochastic Chemical Kinetics. In: Maler, O., Halász, Á., Dang, T., Piazza, C. (eds) Hybrid Systems Biology. HSB 2014. Lecture Notes in Computer Science(), vol 7699. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27655-7

  • Online ISBN: 978-3-319-27656-4

  • eBook Packages: Computer ScienceComputer Science (R0)