Skip to main content

Modeling and Analysis of Qualitative Behavior of Gene Regulatory Networks

Part of the Lecture Notes in Computer Science book series (LNBI,volume 7699)

Abstract

We describe a hybrid system based framework for modeling gene regulation and other biomolecular networks and a method for analysis of the dynamic behavior of such models. A particular feature of the proposed framework is the focus on qualitative experimentally testable properties of the system. With this goal in mind we introduce the notion of the frame of a hybrid system, which allows for the discretisation of the state space of the network. We propose two different methods for the analysis of this state space. The result of the analysis is a set of attractors that characterize the underlying biological system.

Whilst in the general case the problem of finding attractors in the state space is algorithmically undecidable, we demonstrate that our methods work for comparatively complex gene regulatory network model of \(\lambda \)-phage. For this model we are able to identify attractors corresponding to two known biological behaviors of \(\lambda \)-phage: lysis and lysogeny and also to show that there are no other stable behavior regions for this model.

Keywords

  • Gene Regulatory Network
  • Hybrid Automaton
  • Transition Constant
  • Strongly Connect Component
  • Outgoing Transition

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

The authors are listed in alphabetical order and have equally contributed to the paper. The work was supported by Latvian Council of Science grant 258/2012 and Latvian State Research programme project NexIT (2014-2017).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-27656-4_3
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-27656-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   49.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Notes

  1. 1.

    For biomolecular networks the value \(''\rightarrow ''\) describing the situation where concentration of some substance does not change is generally reserved for the cases in which concentration is either 0 or the maximal biologically feasible saturation value.

References

  1. Ahmad, J., Bernot, J., Comet, J., Lime, D., Roux, O.: Hybrid modelling and dynamical analysis of gene regulatory networks with delays. Complexus 3, 231–251 (2007)

    CrossRef  Google Scholar 

  2. Alur, R., Belta, C., Ivančić, F., Kumar, V., Mintz, M., Pappas, G.J., Rubin, H., Schug, J.: Hybrid modeling and simulation of biomolecular networks. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 19–32. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  3. Bartocci, E., Liò, P., Merelli, E., Paoletti, N.: Multiple verification in complex biological systems: the bone remodelling case study. In: Priami, C., Petre, I., de Vink, E. (eds.) Transactions on Computational Systems Biology XIV. LNCS, vol. 7625, pp. 53–76. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  4. Batt, G., Ben Salah, R., Maler, O.: On timed models of gene networks. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 38–52. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  5. Brazma, A., Schlitt, T.: Reverse engineering of gene regulatory networks: a finite state linear model. Genome Biol. 4(P5), 1–31 (2003)

    Google Scholar 

  6. Brazma, R., Cerans, K., Ruklisa, D., Schlitt, T., Viksna, J.: HSM - a hybrid system based approach for modelling intracellular networks. Gene 518, 70–77 (2013)

    CrossRef  Google Scholar 

  7. de Jong, H., Gouze, J., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bull. Math. Biol. 66, 301–340 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Fromentin, J., Eveillard, D., Roux, O.: Hybrid modeling of biological networks: mixing temporal and qualitative biological properties. BMC Syst. Biol. 4(79), 11 (2010)

    Google Scholar 

  9. Ghosh, R., Tomlin, C.: Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modelling: Delta-notch protein signalling. Syst. Biol. 1, 170–183 (2004)

    CrossRef  Google Scholar 

  10. Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bartocci, E.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  11. McAdams, H., Shapiro, L.: Circuit simulation of genetic networks. Science 269, 650–656 (1995)

    CrossRef  Google Scholar 

  12. Ruklisa, D., Brazma, A., Viksna, J.: Reconstruction of gene regulatory networks under the finite state linear model. Genome Inform. 16, 225–236 (2005)

    Google Scholar 

  13. Schlitt, T., Brazma, A.: Modelling in molecular biology: describing transcription regulatory networks at different scales. Philos. Trans. R. Soc. Lond. B 361, 483–494 (2006)

    CrossRef  Google Scholar 

  14. Serra, R., Vilani, M., Barbieri, A., Kaufmfman, S., Colacci, A.: One the dynamics of random boolean networks subject to noise: attractors, ergodic sets and cell types. J. Theor. Biol. 265, 185–193 (2010)

    CrossRef  Google Scholar 

  15. Siebert, H., Bockmayr, A.: Temporal constraints in the logical analysis of regulatory networks. Theor. Comput. Sci. 391, 258–275 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Thomas, D., Thieffry, R., Kaufman, M.: Dynamic behaviour of biological regulatory networks. i. biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol. 57, 247–276 (1995)

    CrossRef  MATH  Google Scholar 

  17. Thomas, D., Thieffry, R., Kaufman, M.: Dynamic behaviour of biological regulatory networks. ii. immunity control in bacteriophage lamda. Bull. Math. Biol. 57, 277–297 (1995)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juris Viksna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Brazma, A., Cerans, K., Ruklisa, D., Schlitt, T., Viksna, J. (2015). Modeling and Analysis of Qualitative Behavior of Gene Regulatory Networks. In: Maler, O., Halász, Á., Dang, T., Piazza, C. (eds) Hybrid Systems Biology. HSB 2014. Lecture Notes in Computer Science(), vol 7699. Springer, Cham. https://doi.org/10.1007/978-3-319-27656-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27656-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27655-7

  • Online ISBN: 978-3-319-27656-4

  • eBook Packages: Computer ScienceComputer Science (R0)