Skip to main content

Pathophysiology of Diabetes and Charcot Neuroarthropathy

  • Chapter
  • First Online:
  • 1375 Accesses

Abstract

Diabetes and Charcot neuroarthropathy are complex diseases that have substantial healthcare implications and cost. The pathophysiology of these diseases, as it applies to the orthopedic surgeon, is not completely understood but is continuing to evolve. This chapter serves to illustrate the current knowledge regarding the pathogenesis of the musculoskeletal complications of diabetes. The focus is on the effect of diabetes and hyperglycemia on the nervous, vascular, and immune system. The historical perspectives on the pathogenesis of Charcot arthropathy (the neurotraumatic and neurovascular theories) are also discussed along with a description of the modern evolution of these theories. Inflammation has become the focus of much of the research in both diabetes and Charcot arthropathy and has been linked to both diseases through several cellular pathways. As we continue to clarify the pathogenesis of these diseases, the potential for therapeutic targets will emerge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Centers for Disease Control and Prevention. National diabetes fact sheet: general information and national estimates on diabetes in the United States. Atlanta, GA: Centers for Disease Control and Prevention; 2014.

    Google Scholar 

  2. American Diabetes Association. Economic costs of diabetes in the U.S. in 2012. Diabetes Care. 2013;36(4):1033–46.

    Article  PubMed Central  Google Scholar 

  3. Varma AK. Charcot neuroarthropathy of the foot and ankle: a review. J Foot Ankle Surg. 2013;52(6):740–9.

    Article  PubMed  Google Scholar 

  4. Cameron NE, Eaton SE, Cotter MA, Tesfaye S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia. 2001;44(11):1973–88.

    Article  CAS  PubMed  Google Scholar 

  5. Cofield RH, Morrison MJ, Beabout JW. Diabetic neuroarthropathy in the foot: patient characteristics and patterns of radiographic change. Foot Ankle. 1983;4(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  6. Al-Nammari SS, Timothy T, Afsie S. A Surgeon’s guide to advances in the pharmacological management of acute Charcot neuroarthropathy. Foot Ankle Surg. 2013;19(4):212–7.

    Article  PubMed  Google Scholar 

  7. Sanders LJ. The Charcot foot: historical perspective 1827–2003. Diabetes Metab Res Rev. 2004;20 Suppl 1:S4–8.

    Article  PubMed  Google Scholar 

  8. Kumar DR, Aslinia F, Yale SH, Mazza JJ. Jean-Martin Charcot: the father of neurology. Clin Med Res. 2011;9(1):46–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wr J. Neuritic manifestations in diabetes mellitus. Arch Intern Med. 1936;57:307–66.

    Article  Google Scholar 

  10. Eichenholtz SN. Charcot joints. Charles C Thomas: Springfield, IL; 1966.

    Google Scholar 

  11. Bowker JH, editor. The diabetic foot. St. Louis: Mosby; 1993.

    Google Scholar 

  12. Fernando Grover Páez SETS. Sara Pascoe González, and EGCMoz, García CEM. Intech: The Diabetic Charcot Foot; 2013.

    Google Scholar 

  13. Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34(31):2436–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res. 2001;88(2):E14–22.

    Article  CAS  PubMed  Google Scholar 

  15. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C—dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49(11):1939–45.

    Article  CAS  PubMed  Google Scholar 

  16. Brouwers O, Niessen PM, Haenen G, Miyata T, Brownlee M, Stehouwer CD, et al. Hyperglycaemia-induced impairment of endothelium-dependent vasorelaxation in rat mesenteric arteries is mediated by intracellular methylglyoxal levels in a pathway dependent on oxidative stress. Diabetologia. 2010;53(5):989–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lemkes BA, Hermanides J, Devries JH, Holleman F, Meijers JC, Hoekstra JB. Hyperglycemia: a prothrombotic factor? J Thromb Haemost. 2010;8(8):1663–9.

    Article  CAS  PubMed  Google Scholar 

  18. Grant PJ. Diabetes mellitus as a prothrombotic condition. J Intern Med. 2007;262(2):157–72.

    Article  CAS  PubMed  Google Scholar 

  19. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287(19):2570–81.

    Article  CAS  PubMed  Google Scholar 

  20. Dyck PJ, Clark VM, Overland CJ, Davies JL, Pach JM, Dyck PJ, et al. Impaired glycemia and diabetic polyneuropathy: the OC IG Survey. Diabetes Care. 2012;35(3):584–91.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhao J, Randive R, Stewart JA. Molecular mechanisms of AGE/RAGE-mediated fibrosis in the diabetic heart. World J Diabetes. 2014;5(6):860–7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kurabayashi M. Vascular Calcification—Pathological Mechanism and Clinical Application—Role of vascular smooth muscle cells in vascular calcification. Clin Calcium. 2015;25(5):661–9.

    PubMed  Google Scholar 

  23. Notsu M, Yamaguchi T, Okazaki K, Tanaka K, Ogawa N, Kanazawa I, et al. Advanced glycation end product 3 (AGE3) suppresses the mineralization of mouse stromal ST2 cells and human mesenchymal stem cells by increasing TGF-beta expression and secretion. Endocrinology. 2014;155(7):2402–10.

    Article  PubMed  Google Scholar 

  24. Mowat A, Baum J. Chemotaxis of polymorphonuclear leukocytes from patients with diabetes mellitus. N Engl J Med. 1971;284(12):621–7.

    Article  CAS  PubMed  Google Scholar 

  25. Geerlings SE, Hoepelman AI. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol. 1999;26(3–4):259–65.

    Article  CAS  PubMed  Google Scholar 

  26. Vergani D, Johnston C, B-Abdullah N, Barnett AH. Low serum C4 concentrations: an inherited predisposition to insulin dependent diabetes? Br Med J (Clin Res Ed). 1983;286(6369):926–8.

    Article  CAS  Google Scholar 

  27. Zozulinska D, Majchrzak A, Sobieska M, Wiktorowicz K, Wierusz-Wysocka B. Serum interleukin-8 level is increased in diabetic patients. Diabetologia. 1999;42(1):117–8.

    Article  CAS  PubMed  Google Scholar 

  28. Mooradian AD, Reed RL, Meredith KE, Scuderi P. Serum levels of tumor necrosis factor and IL-1 alpha and IL-1 beta in diabetic patients. Diabetes Care. 1991;14(1):63–5.

    Article  CAS  PubMed  Google Scholar 

  29. Li Volti S, Caruso-Nicoletti M, Biazzo F, Sciacca A, Mandara G, Mancuso M, et al. Hyporesponsiveness to intradermal administration of hepatitis B vaccine in insulin dependent diabetes mellitus. Arch Dis Child. 1998;78(1):54–7.

    Article  CAS  PubMed  Google Scholar 

  30. Black CT, Hennessey PJ, Andrassy RJ. Short-term hyperglycemia depresses immunity through nonenzymatic glycosylation of circulating immunoglobulin. J Trauma. 1990;30(7):830–2. discussion 2-3.

    Article  CAS  PubMed  Google Scholar 

  31. Jeffcoate WJ. Charcot neuro-osteoarthropathy. Diabetes Metab Res Rev. 2008;24 Suppl 1:S62–5.

    Article  PubMed  Google Scholar 

  32. Bruhn-Olszewska B, Korzon-Burakowska A, Gabig-Ciminska M, Olszewski P, Wegrzyn A, Jakobkiewicz-Banecka J. Molecular factors involved in the development of diabetic foot syndrome. Acta Biochim Pol. 2012;59(4):507–13.

    CAS  PubMed  Google Scholar 

  33. Baumhauer JF, O’Keefe RJ, Schon LC, Pinzur MS. Cytokine-induced osteoclastic bone resorption in Charcot arthropathy: an immunohistochemical study. Foot Ankle Int. 2006;27(10):797–800.

    PubMed  Google Scholar 

  34. Offley SC, Guo TZ, Wei T, Clark JD, Vogel H, Lindsey DP, et al. Capsaicin-sensitive sensory neurons contribute to the maintenance of trabecular bone integrity. J Bone Miner Res. 2005;20(2):257–67.

    Article  PubMed  Google Scholar 

  35. Ndip A, Williams A, Jude EB, Serracino-Inglott F, Richardson S, Smyth JV, et al. The RANKL/RANK/OPG signaling pathway mediates medial arterial calcification in diabetic Charcot neuroarthropathy. Diabetes. 2011;60(8):2187–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gutekunst DJ, Smith KE, Commean PK, Bohnert KL, Prior FW, Sinacore DR. Impact of Charcot neuroarthropathy on metatarsal bone mineral density and geometric strength indices. Bone. 2013;52(1):407–13.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Larson SA, Burns PR. The pathogenesis of Charcot neuroarthropathy: current concepts. Diabet Foot Ankle. 2012;3.

    Google Scholar 

  38. Kaynak G, Birsel O, Guven MF, Ogut T. An overview of the Charcot foot pathophysiology. Diabet Foot Ankle. 2013;4:12. doi:10.3402/dfa.v4i0.21117.

    Article  Google Scholar 

  39. Uccioli L, Sinistro A, Almerighi C, Ciaprini C, Cavazza A, Giurato L, et al. Proinflammatory modulation of the surface and cytokine phenotype of monocytes in patients with acute Charcot foot. Diabetes Care. 2010;33(2):350–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Irie K, Hara-Irie F, Ozawa H, Yajima T. Calcitonin gene-related peptide (CGRP)-containing nerve fibers in bone tissue and their involvement in bone remodeling. Microsc Res Tech. 2002;58(2):85–90.

    Article  CAS  PubMed  Google Scholar 

  41. Wang L, Shi X, Zhao R, Halloran BP, Clark DJ, Jacobs CR, et al. Calcitonin-gene-related peptide stimulates stromal cell osteogenic differentiation and inhibits RANKL induced NF-kappaB activation, osteoclastogenesis and bone resorption. Bone. 2010;46(5):1369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen L. Kates M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Soin, S.P., Hunter, J.G., Kates, S.L. (2016). Pathophysiology of Diabetes and Charcot Neuroarthropathy. In: Herscovici, Jr., D. (eds) The Surgical Management of the Diabetic Foot and Ankle. Springer, Cham. https://doi.org/10.1007/978-3-319-27623-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27623-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27621-2

  • Online ISBN: 978-3-319-27623-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics