Skip to main content

Intestinal Stem Cells in Homeostasis and Cancer

  • Chapter
  • First Online:
Regenerative Medicine - from Protocol to Patient
  • 887 Accesses

Abstract

Intestinal stem cell (ISC) population at crypts base displays extraordinary capability for organized renewal and regeneration of intestinal epithelium. Complex interplay among stem cells, its progeny and niche balances between self-renewal and differentiation to maintain intestinal homeostasis. Involvement of various interactions to regulate intestinal epithelium rapid renewal, presents with high risk of developing cancer. Intestinal stem cells (ISCs) biology and cancer development is closely related in various aspects. Studies have shown, ISCs as the cells of origin for majority of intestinal cancer where signaling pathways regulating ISC are often deregulated, giving rise to cancer stem cell (CSC). Moreover, intestinal cancers are shown to maintain cellular hierarchy similar to intestinal epithelium with presence of CSC at apex. CSCs are cell subpopulation with ISC like features involved in tumor genesis. Here we present common and different features of ISC and CSC with special emphasis on differential regulation of Wnt, Notch and BMP signaling pathways in both stem cell populations. Recent identification of both ISC and CSC markers along with technological development to track stem cell lineage and endogenous activity in vivo with possibility to generate ex vivo intestinal organoids, has broaden our understanding regarding ISC driven intestinal epithelium homeostasis, repair and cancer. Basic understanding of intestinal stem cell biology and its role in carcinogenesis opens up exciting opportunity to develop stem cell based therapeutics for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Hajj M, Wicha MS et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson EC, Wong MH (2010) Caught in the Akt: regulation of Wnt signaling in the intestine. Gastroenterology 139(3):718–722

    Article  PubMed  PubMed Central  Google Scholar 

  • Andoh A, Bamba S et al (2005) Colonic subepithelial myofibroblasts in mucosal inflammation and repair: contribution of bone marrow-derived stem cells to the gut regenerative response. J Gastroenterol 40(12):1089–1099

    Article  PubMed  Google Scholar 

  • Andoh A, Bamba S et al (2007) Role of intestinal subepithelial myofibroblasts in inflammation and regenerative response in the gut. Pharmacol Ther 114(1):94–106

    Article  CAS  PubMed  Google Scholar 

  • Andriatsilavo M, Gervais L et al (2013) The Drosophila midgut as a model to study adult stem cells. Med Sci (Paris) 29(1):75–81

    Article  Google Scholar 

  • Ashley N (2013) Regulation of intestinal cancer stem cells. Cancer Lett 338(1):120–126

    Article  CAS  PubMed  Google Scholar 

  • Baker A-M, Graham TA et al (2015) Characterization of LGR5 stem cells in colorectal adenomas and carcinomas. Sci Rep 5:8654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker N (2014) Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol 15(1):19–33

    Article  CAS  PubMed  Google Scholar 

  • Barker N, Clevers H (2007) Tracking down the stem cells of the intestine: strategies to identify adult stem cells. Gastroenterology 133(6):1755–1760

    Article  CAS  PubMed  Google Scholar 

  • Barker N, Clevers H (2010) Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology 138(5):1681–1696

    Article  CAS  PubMed  Google Scholar 

  • Barker N, van Es JH et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007

    Article  CAS  PubMed  Google Scholar 

  • Barker N, van de Wetering M et al (2008) The intestinal stem cell. Genes Dev 22(14):1856–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker N, Ridgway RA et al (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457(7229):608–611

    Article  CAS  PubMed  Google Scholar 

  • Barker N, van Oudenaarden A et al (2012) Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell 11(4):452–460

    Article  CAS  PubMed  Google Scholar 

  • Batts LE, Polk DB et al (2006) Bmp signaling is required for intestinal growth and morphogenesis. Dev Dyn 235(6):1563–1570

    Article  CAS  PubMed  Google Scholar 

  • Bitarte N, Bandres E et al (2011) MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells 29(11):1661–1671

    Article  CAS  PubMed  Google Scholar 

  • Biteau B, Hochmuth CE et al (2008) JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3(4):442–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biteau B, Hochmuth CE et al (2011) Maintaining tissue homeostasis: dynamic control of somatic stem cell activity. Cell Stem Cell 9(5):402–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanpain C, Simons BD (2013) Unravelling stem cell dynamics by lineage tracing. Nat Rev Mol Cell Biol 14(8):489–502

    Article  CAS  PubMed  Google Scholar 

  • Buske P, Galle J et al (2011) A comprehensive model of the spatio-temporal stem cell and tissue organisation in the intestinal crypt. PLoS Comput Biol 7(1):e1001045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmon KS, Gong X et al (2011) R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A 108(28):11452–11457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarty S, Fan D et al (1990) Modulation of differentiation and proliferation in human colon carcinoma cells by transforming growth factor beta 1 and beta 2. Int J Cancer 46(3):493–499

    Article  CAS  PubMed  Google Scholar 

  • Chandler JM, Lagasse E (2010) Cancerous stem cells: deviant stem cells with cancer-causing misbehavior. Stem Cell Res Ther 1(2):13

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. III. Entero-endocrine cells. Am J Anat 141(4):503–519

    Article  CAS  PubMed  Google Scholar 

  • Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17(3):313–319

    Article  CAS  PubMed  Google Scholar 

  • Creamer B, Shorter RG et al (1961) The turnover and shedding of epithelial cells. I. The turnover in the gastro-intestinal tract. Gut 2:110–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalerba P, Dylla SJ et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104(24):10158–10163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalerba P, Kalisky T et al (2011) Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 29(12):1120–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies PS, Dismuke AD et al (2008) Wnt-reporter expression pattern in the mouse intestine during homeostasis. BMC Gastroenterol 8:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Lau W, Barker N et al (2011) Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476(7360):293–297

    Article  PubMed  CAS  Google Scholar 

  • de Sousa EM, Vermeulen L et al (2011a) Targeting Wnt signaling in colon cancer stem cells. Clin Cancer Res 17(4):647–653

    Article  PubMed  CAS  Google Scholar 

  • de Sousa EMF, Colak S et al (2011b) Methylation of cancer-stem-cell-associated Wnt target genes predicts poor prognosis in colorectal cancer patients. Cell Stem Cell 9(5):476–485

    Article  CAS  Google Scholar 

  • Dean M, Fojo T et al (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5(4):275–284

    Article  CAS  PubMed  Google Scholar 

  • Dieter SM, Ball CR et al (2011) Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell 9(4):357–365

    Article  CAS  PubMed  Google Scholar 

  • Forster R, Chiba K et al (2014) Human intestinal tissue with adult stem cell properties derived from pluripotent stem cells. Stem Cell Rep 2(6):838–852

    Article  CAS  Google Scholar 

  • Fre S, Huyghe M et al (2005) Notch signals control the fate of immature progenitor cells in the intestine. Nature 435(7044):964–968

    Article  CAS  PubMed  Google Scholar 

  • Fre S, Pallavi SK et al (2009) Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine. Proc Natl Acad Sci U S A 106(15):6309–6314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs E (2009) The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 137(5):811–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannakis M, Stappenbeck TS et al (2006) Molecular properties of adult mouse gastric and intestinal epithelial progenitors in their niches. J Biol Chem 281(16):11292–11300

    Article  CAS  PubMed  Google Scholar 

  • Greco V, Guo S (2010) Compartmentalized organization: a common and required feature of stem cell niches? Development 137(10):1586–1594

    Article  CAS  PubMed  Google Scholar 

  • Gregorieff A, Pinto D et al (2005) Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 129(2):626–638

    Article  CAS  PubMed  Google Scholar 

  • Guezguez A, Pare F et al (2014) Modulation of stemness in a human normal intestinal epithelial crypt cell line by activation of the WNT signaling pathway. Exp Cell Res 322(2):355–364

    Article  CAS  PubMed  Google Scholar 

  • Haramis AP, Begthel H et al (2004) De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303(5664):1684–1686

    Article  CAS  PubMed  Google Scholar 

  • He XC, Zhang J et al (2004) BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet 36(10):1117–1121

    Article  CAS  PubMed  Google Scholar 

  • Houthuijzen JM, Daenen LG et al (2012) The role of mesenchymal stem cells in anti-cancer drug resistance and tumour progression. Br J Cancer 106(12):1901–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang EH, Hynes MJ et al (2009) Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 69(8):3382–3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston MD, Edwards CM et al (2007) Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer. Proc Natl Acad Sci U S A 104(10):4008–4013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston MD, Maini PK et al (2010) On the proportion of cancer stem cells in a tumour. J Theor Biol 266(4):708–711

    Article  PubMed  Google Scholar 

  • Jung P, Sato T et al (2011) Isolation and in vitro expansion of human colonic stem cells. Nat Med 17(10):1225–1227

    Article  CAS  PubMed  Google Scholar 

  • Juno RJ, Williams JL et al (2002) A serum factor after intestinal resection stimulates epidermal growth factor receptor signaling and proliferation in intestinal epithelial cells. Surgery 132(2):377–383

    Article  PubMed  Google Scholar 

  • Juno RJ, Knott AW et al (2003) A serum factor(s) after small bowel resection induces intestinal epithelial cell proliferation: effects of timing, site, and extent of resection. J Pediatr Surg 38(6):868–874

    Article  PubMed  Google Scholar 

  • Katoh M (2007) WNT antagonist, DKK2, is a Notch signaling target in intestinal stem cells: augmentation of a negative regulation system for canonical WNT signaling pathway by the Notch-DKK2 signaling loop in primates. Int J Mol Med 19(1):197–201

    CAS  PubMed  Google Scholar 

  • Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129(3):465–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemper K, Grandela C et al (2010) Molecular identification and targeting of colorectal cancer stem cells. Oncotarget 1(6):387–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Kemper K, Prasetyanti PR et al (2012) Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells. Stem Cells 30(11):2378–2386

    Article  CAS  PubMed  Google Scholar 

  • Kim JE, Lee JM et al (2015) Differentiation of poorly differentiated colorectal adenocarcinomas from well- or moderately differentiated colorectal adenocarcinomas at contrast-enhanced multidetector CT. Abdom Imaging 40(1):1–10

    Article  PubMed  Google Scholar 

  • Kirkland SC, Ying H (2008) Alpha2beta1 integrin regulates lineage commitment in multipotent human colorectal cancer cells. J Biol Chem 283(41):27612–27619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleist B, Xu L et al (2011) Expression of the adult intestinal stem cell marker Lgr5 in the metastatic cascade of colorectal cancer. Int J Clin Exp Pathol 4(4):327–335

    PubMed  PubMed Central  Google Scholar 

  • Koo BK, Stange DE et al (2012) Controlled gene expression in primary Lgr5 organoid cultures. Nat Methods 9(1):81–83

    Article  CAS  Google Scholar 

  • Korinek V, Barker N et al (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19(4):379–383

    Article  CAS  PubMed  Google Scholar 

  • Kosinski C, Li VS et al (2007) Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci U S A 104(39):15418–15423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahar N, Lei NY et al (2011) Intestinal subepithelial myofibroblasts support in vitro and in vivo growth of human small intestinal epithelium. PLoS One 6(11):e26898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurent E, McCoy JW 3rd et al (2008) Nox1 is over-expressed in human colon cancers and correlates with activating mutations in K-Ras. Int J Cancer 123(1):100–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leblond CP, Walker BE (1956) Renewal of cell populations. Physiol Rev 36(2):255–276

    CAS  PubMed  Google Scholar 

  • Levin TG, Powell AE et al (2010) Characterization of the intestinal cancer stem cell marker CD166 in the human and mouse gastrointestinal tract. Gastroenterology 139(6):2072–2082.e2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin DE, Barthel ER et al (2013) Human tissue-engineered small intestine forms from postnatal progenitor cells. J Pediatr Surg 48(1):129–137

    Article  PubMed  Google Scholar 

  • Lewis MP, Lygoe KA et al (2004) Tumour-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer 90(4):822–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327(5965):542–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardo Y, Scopelliti A et al (2011) Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice. Gastroenterology 140(1):297–309

    Article  CAS  PubMed  Google Scholar 

  • Mathieu J, Zhang Z et al (2011) HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 71(13):4640–4652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May R, Sureban SM et al (2009) Doublecortin and CaM kinase-like-1 and leucine-rich-repeat-containing G-protein-coupled receptor mark quiescent and cycling intestinal stem cells, respectively. Stem Cells 27(10):2571–2579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazumdar J, O’Brien WT et al (2010) O2 regulates stem cells through Wnt/beta-catenin signalling. Nat Cell Biol 12(10):1007–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCracken KW, Howell JC et al (2011) Generating human intestinal tissue from pluripotent stem cells in vitro. Nat Protoc 6(12):1920–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merlos-Suarez A, Barriga FM et al (2011) The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8(5):511–524

    Article  CAS  PubMed  Google Scholar 

  • Metcalfe C, Kljavin NM et al (2014) Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell 14(2):149–159

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto S, Rosenberg DW (2011) Role of Notch signaling in colon homeostasis and carcinogenesis. Cancer Sci 102(11):1938–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montgomery RK, Mulberg AE et al (1999) Development of the human gastrointestinal tract: twenty years of progress. Gastroenterology 116(3):702–731

    Article  CAS  PubMed  Google Scholar 

  • Montgomery RK, Carlone DL et al (2011) Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc Natl Acad Sci U S A 108(1):179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monzo M, Navarro A et al (2008) Overlapping expression of microRNAs in human embryonic colon and colorectal cancer. Cell Res 18(8):823–833

    Article  CAS  PubMed  Google Scholar 

  • Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311(5769):1880–1885

    Article  CAS  PubMed  Google Scholar 

  • Munoz J, Stange DE et al (2012) The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4’ cell markers. EMBO J 31(14):3079–3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ootani A, Li X et al (2009) Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med 15(6):701–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang R, Law WL et al (2010) A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 6(6):603–615

    Article  CAS  PubMed  Google Scholar 

  • Pellegrinet L, Rodilla V et al (2011) Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology 140(4):1230–1240. e1231–e1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pignatelli M, Bodmer WF (1989) Integrin-receptor-mediated differentiation and growth inhibition are enhanced by transforming growth factor-beta in colorectal tumour cells grown in collagen gel. Int J Cancer 44(3):518–523

    Article  CAS  PubMed  Google Scholar 

  • Pinchuk IV, Beswick EJ et al (2011) Human colonic myofibroblasts promote expansion of CD4+ CD25high Foxp3+ regulatory T cells. Gastroenterology 140(7):2019–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto D, Clevers H (2005) Wnt, stem cells and cancer in the intestine. Biol Cell 97(3):185–196

    Article  CAS  PubMed  Google Scholar 

  • Pinto D, Gregorieff A et al (2003) Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17(14):1709–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potten CS, Kovacs L et al (1974) Continuous labelling studies on mouse skin and intestine. Cell Tissue Kinet 7(3):271–283

    CAS  PubMed  Google Scholar 

  • Potten CS, Owen G et al (2002) Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci 115(Pt 11):2381–2388

    CAS  PubMed  Google Scholar 

  • Powell DW, Adegboyega PA et al (2005) Epithelial cells and their neighbors I. Role of intestinal myofibroblasts in development, repair, and cancer. Am J Physiol Gastrointest Liver Physiol 289(1):G2–G7

    Article  CAS  PubMed  Google Scholar 

  • Radtke F, Clevers H (2005) Self-renewal and cancer of the gut: two sides of a coin. Science 307(5717):1904–1909

    Article  CAS  PubMed  Google Scholar 

  • Reed KR, Tunster SJ et al (2012) Entopic overexpression of Ascl2 does not accelerate tumourigenesis in ApcMin mice. Gut 61(10):1435–1438

    Article  PubMed  Google Scholar 

  • Ricci-Vitiani L, Lombardi DG et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115

    Article  CAS  PubMed  Google Scholar 

  • Richman PI, Bodmer WF (1988) Control of differentiation in human colorectal carcinoma cell lines: epithelial-mesenchymal interactions. J Pathol 156(3):197–211

    Article  CAS  PubMed  Google Scholar 

  • Richman PI, Tilly R et al (1987) Colonic pericrypt sheath cells: characterisation of cell type with new monoclonal antibody. J Clin Pathol 40(6):593–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sancho E, Batlle E et al (2003) Live and let die in the intestinal epithelium. Curr Opin Cell Biol 15(6):763–770

    Article  CAS  PubMed  Google Scholar 

  • Sangiorgi E, Capecchi MR (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40(7):915–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T, Clevers H (2013) Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340(6137):1190–1194

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Vries RG et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265

    Article  CAS  PubMed  Google Scholar 

  • Sato T, van Es JH et al (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469(7330):415–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schepers AG, Vries R et al (2011) Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes. EMBO J 30(6):1104–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schepers AG, Snippert HJ et al (2012) Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337(6095):730–735

    Article  CAS  PubMed  Google Scholar 

  • Schwank G, Koo BK et al (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13(6):653–658

    Article  CAS  PubMed  Google Scholar 

  • Schwitalla S, Fingerle AA et al (2013) Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152(1–2):25–38

    Article  CAS  PubMed  Google Scholar 

  • Scoville DH, Sato T et al (2008) Current view: intestinal stem cells and signaling. Gastroenterology 134(3):849–864

    Article  CAS  PubMed  Google Scholar 

  • Shmelkov SV, Butler JM et al (2008) CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest 118(6):2111–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sikandar SS, Pate KT et al (2010) NOTCH signaling is required for formation and self-renewal of tumor-initiating cells and for repression of secretory cell differentiation in colon cancer. Cancer Res 70(4):1469–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spence JR, Mayhew CN et al (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470(7332):105–109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tajbakhsh S (2014) Ballroom dancing with stem cells: placement and displacement in the intestinal crypt. Cell Stem Cell 14(3):271–273

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Ishii H et al (2011) Significance of Lgr5(+ve) cancer stem cells in the colon and rectum. Ann Surg Oncol 18(4):1166–1174

    Article  PubMed  Google Scholar 

  • Takeda N, Jain R et al (2011) Interconversion between intestinal stem cell populations in distinct niches. Science 334(6061):1420–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian H, Biehs B et al (2011) A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478(7368):255–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todaro M, Alea MP et al (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1(4):389–402

    Article  CAS  PubMed  Google Scholar 

  • Todaro M, Francipane MG et al (2010) Colon cancer stem cells: promise of targeted therapy. Gastroenterology 138(6):2151–2162

    Article  CAS  PubMed  Google Scholar 

  • van der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71:241–260

    Article  PubMed  CAS  Google Scholar 

  • van der Flier LG, Haegebarth A et al (2009a) OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology 137(1):15–17

    Article  PubMed  Google Scholar 

  • van der Flier LG, van Gijn ME et al (2009b) Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 136(5):903–912

    Article  PubMed  CAS  Google Scholar 

  • Vermeulen L, Todaro M et al (2008) Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci U S A 105(36):13427–13432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vermeulen L, De Sousa EMF et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12(5):468–476

    Article  CAS  PubMed  Google Scholar 

  • von Furstenberg RJ, Gulati AS et al (2011) Sorting mouse jejunal epithelial cells with CD24 yields a population with characteristics of intestinal stem cells. Am J Physiol Gastrointest Liver Physiol 300(3):G409–G417

    Article  CAS  Google Scholar 

  • Walker F, Zhang HH et al (2011) LGR5 is a negative regulator of tumourigenicity, antagonizes Wnt signalling and regulates cell adhesion in colorectal cancer cell lines. PLoS One 6(7):e22733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson CL, Mahe MM et al (2014) An in vivo model of human small intestine using pluripotent stem cells. Nat Med 20(11):1310–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webber J, Steadman R et al (2010) Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res 70(23):9621–9630

    Article  CAS  PubMed  Google Scholar 

  • Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100(1):157–168

    Article  CAS  PubMed  Google Scholar 

  • Wells JM, Spence JR (2014) How to make an intestine. Development 141(4):752–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widschwendter M, Fiegl H et al (2007) Epigenetic stem cell signature in cancer. Nat Genet 39(2):157–158

    Article  CAS  PubMed  Google Scholar 

  • Yeung TM, Gandhi SC et al (2010) Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci U S A 107(8):3722–3727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung TM, Gandhi SC et al (2011) Hypoxia and lineage specification of cell line-derived colorectal cancer stem cells. Proc Natl Acad Sci U S A 108(11):4382–4387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama S, Takifuji K et al (2010) Moderately differentiated colorectal adenocarcinoma as a lymph node metastatic phenotype: comparison with well differentiated counterparts. BMC Surg 10:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu T, Chen X et al (2012a) Regulation of the potential marker for intestinal cells, Bmi1, by beta-catenin and the zinc finger protein KLF4: implications for colon cancer. J Biol Chem 287(6):3760–3768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Kanwar SS et al (2012b) MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFbetaR2) in colon cancer cells. Carcinogenesis 33(1):68–76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zagouras P, Stifani S et al (1995) Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc Natl Acad Sci U S A 92(14):6414–6418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li B et al (2010) Notch1 regulates the growth of human colon cancers. Cancer 116(22):5207–5218

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Gibson P et al (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457(7229):603–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitnala Sasikala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singh, S., Sasikala, M., Rao, G.V., Reddy, D.N. (2016). Intestinal Stem Cells in Homeostasis and Cancer. In: Steinhoff, G. (eds) Regenerative Medicine - from Protocol to Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-27610-6_9

Download citation

Publish with us

Policies and ethics