Skip to main content

Induced Pluripotent Stem Cells in Regenerative Medicine

  • Chapter
  • First Online:

Abstract

The conversion of somatic cells into pluripotent cells is transforming the way diseases are studied and treated. Owing to their ability to differentiate into any cell type in the body and being patient-specific, induced pluripotent stem cells (iPSCs) hold great promise for disease modeling, drug discovery and regenerative medicine. Since their discovery in 2006, significant efforts have been made to understand the reprogramming process and to generate human iPSCs with potential for clinical use. Additionally, the development of advanced genome-editing platforms to increase homologous recombination efficiency, namely DNA nucleases, is making the generation of gene-corrected patient-specific iPSCs an achievable goal, with potential future therapeutic applications. Here, we review recent developments in the generation, differentiation and genetic manipulation of human iPSCs and discuss their relevance to regenerative medicine and the challenges still remaining for clinical application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aasen T, Raya A, Barrero MJ et al (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26:1276–1284

    Article  CAS  PubMed  Google Scholar 

  • Bailey AM (2012) Balancing tissue and tumor formation in regenerative medicine. Sci Transl Med 4:147fs128

    Article  Google Scholar 

  • Ban H, Nishishita N, Fusaki N et al (2011) Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A 108:14234–14239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao L, He L, Chen J et al (2011) Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Res 21:600–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Nur O, Russ HA, Efrat S et al (2011) Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 9:17–23

    Article  CAS  PubMed  Google Scholar 

  • Bellin M, Casini S, Davis RP et al (2013) Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome. EMBO J 32:3161–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bett GC, Kaplan AD, Lis A et al (2013) Electronic “expression” of the inward rectifier in cardiocytes derived from human-induced pluripotent stem cells. Heart Rhythm 10:1903–1910

    Article  PubMed  Google Scholar 

  • Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Brambrink T, Foreman R, Welstead GG et al (2008) Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2:151–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burridge PW, Keller G, Gold JD et al (2012) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10:16–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burridge PW, Matsa E, Shukla P et al (2014) Chemically defined generation of human cardiomyocytes. Nat Methods 11:855–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao N, Liang H, Huang J et al (2013) Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions. Cell Res 23:1119–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carette JE, Pruszak J, Varadarajan M et al (2010) Generation of iPSCs from cultured human malignant cells. Blood 115:4039–4042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter MK, Frey-Vasconcells J, Rao MS (2009) Developing safe therapies from human pluripotent stem cells. Nat Biotechnol 27:606–613

    Article  CAS  PubMed  Google Scholar 

  • Carroll D (2011a) Genome engineering with zinc-finger nucleases. Genetics 188:773–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll D (2011b) Zinc-finger nucleases: a panoramic view. Curr Gene Ther 11:2–10

    Article  CAS  PubMed  Google Scholar 

  • Chang CW, Lai YS, Pawlik KM et al (2009) Polycistronic lentiviral vector for “hit and run” reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells 27:1042–1049

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Gulbranson DR, Hou Z et al (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8:424–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherry AB, Daley GQ (2013) Reprogrammed cells for disease modeling and regenerative medicine. Annu Rev Med 64:277–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou BK, Mali P, Huang X et al (2011) Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res 21:518–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan CA, Atienza J, Melton DA et al (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309:1369–1373

    Article  CAS  PubMed  Google Scholar 

  • Delacote F, Lopez BS (2008) Importance of the cell cycle phase for the choice of the appropriate DSB repair pathway, for genome stability maintenance: the trans-S double-strand break repair model. Cell Cycle 7:33–38

    Article  CAS  PubMed  Google Scholar 

  • Devalla HD, Schwach V, Ford JW et al (2015) Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol Med 7:394–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Q, Lee YK, Schaefer EA et al (2013a) A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 12:238–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Q, Regan SN, Xia Y et al (2013b) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12:393–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emmert MY, Wolint P, Wickboldt N et al (2013) Human stem cell-based three-dimensional microtissues for advanced cardiac cell therapies. Biomaterials 34:6339–6354

    Article  CAS  PubMed  Google Scholar 

  • Esteban MA, Xu J, Yang J et al (2009) Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 284:17634–17640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans SM, Yelon D, Conlon FL et al (2010) Myocardial lineage development. Circ Res 107:1428–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezashi T, Telugu BP, Alexenko AP et al (2009) Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci U S A 106:10993–10998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng B, Jiang J, Kraus P et al (2009) Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol 11:197–203

    Article  CAS  PubMed  Google Scholar 

  • Flynn R, Grundmann A, Renz P et al (2015) CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp Hematol 43(10):838–848.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey-Vasconcells J, Whittlesey KJ, Baum E et al (2012) Translation of stem cell research: points to consider in designing preclinical animal studies. Stem Cells Transl Med 1:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu JD, Rushing SN, Lieu DK et al (2011) Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes. PLoS One 6:e27417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fusaki N, Ban H, Nishiyama A et al (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fussner E, Djuric U, Strauss M et al (2011) Constitutive heterochromatin reorganization during somatic cell reprogramming. EMBO J 30:1778–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garry DJ, Olson EN (2006) A common progenitor at the heart of development. Cell 127:1101–1104

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez F, Barragan Monasterio M, Tiscornia G et al (2009) Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proc Natl Acad Sci U S A 106:8918–8922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gore A, Li Z, Fung HL et al (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471:63–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graichen R, Xu X, Braam SR et al (2008) Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation 76:357–370

    Article  CAS  PubMed  Google Scholar 

  • Gramlich M, Pane LS, Zhou Q et al (2015) Antisense-mediated exon skipping: a therapeutic strategy for titin-based dilated cardiomyopathy. EMBO Mol Med 7:562–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Abrams RM, Babiarz JE et al (2011) Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci 123:281–289

    Article  CAS  PubMed  Google Scholar 

  • Gupta MK, Illich DJ, Gaarz A et al (2010) Global transcriptional profiles of beating clusters derived from human induced pluripotent stem cells and embryonic stem cells are highly similar. BMC Dev Biol 10:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haase A, Olmer R, Schwanke K et al (2009) Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell 5:434–441

    Article  CAS  PubMed  Google Scholar 

  • Han X, Han J, Ding F et al (2011) Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Res 21:1509–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanna J, Markoulaki S, Schorderet P et al (2008) Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133:250–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heng JC, Feng B, Han J et al (2010) The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell 6:167–174

    Article  CAS  PubMed  Google Scholar 

  • Hirt MN, Boeddinghaus J, Mitchell A et al (2014a) Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation. J Mol Cell Cardiol 74:151–161

    Article  CAS  PubMed  Google Scholar 

  • Hirt MN, Hansen A, Eschenhagen T (2014b) Cardiac tissue engineering: state of the art. Circ Res 114:354–367

    Article  CAS  PubMed  Google Scholar 

  • Hou P, Li Y, Zhang X et al (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341:651–654

    Article  CAS  PubMed  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huangfu D, Maehr R, Guo W et al (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26:795–797

    Article  CAS  PubMed  Google Scholar 

  • Huch M, Koo BK (2015) Modeling mouse and human development using organoid cultures. Development 142:3113–3125

    Article  CAS  PubMed  Google Scholar 

  • Humphreys BD (2014) Kidney structures differentiated from stem cells. Nat Cell Biol 16:19–21

    Article  CAS  PubMed  Google Scholar 

  • Ichida JK, Blanchard J, Lam K et al (2009) A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell 5:491–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishino Y, Shinagawa H, Makino K et al (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen R, Embden JD, Gaastra W et al (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575

    Article  CAS  PubMed  Google Scholar 

  • Jia F, Wilson KD, Sun N et al (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7:197–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Lv W, Ye X et al (2013) Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation. Cell Res 23:92–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  • Jung CB, Moretti A, Mederos Y, Schnitzler M et al (2012) Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Mol Med 4:180–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaji K, Norrby K, Paca A et al (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamao H, Mandai M, Okamoto S et al (2014) Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep 2:205–218

    Article  CAS  Google Scholar 

  • Kang X, Yu Q, Huang Y et al (2015) Effects of integrating and non-integrating reprogramming methods on copy number variation and genomic stability of human induced pluripotent stem cells. PLoS One 10:e0131128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kawamura M, Miyagawa S, Miki K et al (2012) Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126:S29–S37

    Article  CAS  PubMed  Google Scholar 

  • Kehat I, Kenyagin-Karsenti D, Snir M et al (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108:407–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kensah G, Roa Lara A, Dahlmann J et al (2013) Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro. Eur Heart J 34:1134–1146

    Article  CAS  PubMed  Google Scholar 

  • Khan IF, Hirata RK, Wang PR et al (2010) Engineering of human pluripotent stem cells by AAV-mediated gene targeting. Mol Ther 18:1192–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Kim CH, Moon JI et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K, Doi A, Wen B et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Lengner CJ, Kirak O et al (2011a) Reprogramming of postnatal neurons into induced pluripotent stem cells by defined factors. Stem Cells 29:992–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K, Zhao R, Doi A et al (2011b) Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat Biotechnol 29:1117–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HT, Lee KI, Kim DW et al (2013) An ECM-based culture system for the generation and maintenance of xeno-free human iPS cells. Biomaterials 34:1041–1050

    Article  CAS  PubMed  Google Scholar 

  • Kiskinis E, Sandoe J, Williams LA et al (2014) Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell 14:781–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laflamme MA, Chen KY, Naumova AV et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024

    Article  CAS  PubMed  Google Scholar 

  • Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125

    Article  PubMed  CAS  Google Scholar 

  • Lancaster MA, Renner M, Martin CA et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379

    Article  CAS  PubMed  Google Scholar 

  • Laurent LC, Ulitsky I, Slavin I et al (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8:106–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Wei W, Zhu S et al (2009) Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4:16–19

    Article  PubMed  CAS  Google Scholar 

  • Li R, Liang J, Ni S et al (2010) A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7:51–63

    Article  CAS  PubMed  Google Scholar 

  • Li T, Huang S, Zhao X et al (2011) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 39:6315–6325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Suzuki K, Kim NY et al (2014) A cut above the rest: targeted genome editing technologies in human pluripotent stem cells. J Biol Chem 289:4594–4599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HL, Fujimoto N, Sasakawa N et al (2015) Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep 4:143–154

    Article  CAS  Google Scholar 

  • Lian X, Hsiao C, Wilson G et al (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109:E1848–E1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lian X, Zhang J, Azarin SM et al (2013) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc 8:162–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang P, Lan F, Lee AS et al (2013) Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127:1677–1691

    Article  CAS  PubMed  Google Scholar 

  • Liao J, Cui C, Chen S et al (2009) Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 4:11–15

    Article  CAS  PubMed  Google Scholar 

  • Lieu DK, Fu JD, Chiamvimonvat N et al (2013) Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Arrhythm Electrophysiol 6:191–201

    Article  PubMed  PubMed Central  Google Scholar 

  • Lister R, Pelizzola M, Kida YS et al (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471:68–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Zhu F, Yong J et al (2008) Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3:587–590

    Article  CAS  PubMed  Google Scholar 

  • Loh YH, Agarwal S, Park IH et al (2009) Generation of induced pluripotent stem cells from human blood. Blood 113:5476–5479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundy SD, Zhu WZ, Regnier M et al (2013) Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev 22:1991–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Suhr ST, Chang EA et al (2011) Generation of leukemia inhibitory factor and basic fibroblast growth factor-dependent induced pluripotent stem cells from canine adult somatic cells. Stem Cells Dev 20:1669–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Wang J, Loskill P et al (2015) Self-organizing human cardiac microchambers mediated by geometric confinement. Nat Commun 6:7413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maherali N, Hochedlinger K (2009) Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Curr Biol 19:1718–1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mali P, Chou BK, Yen J et al (2010) Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells 28:713–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marson A, Foreman R, Chevalier B et al (2008) Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell 3:132–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayshar Y, Ben-David U, Lavon N et al (2010) Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7:521–531

    Article  CAS  PubMed  Google Scholar 

  • Menasche P, Vanneaux V, Fabreguettes JR et al (2015) Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience. Eur Heart J 36:743–750

    Article  PubMed  Google Scholar 

  • Mikkelsen TS, Hanna J, Zhang X et al (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454:49–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsui K, Suzuki K, Aizawa E et al (2009) Gene targeting in human pluripotent stem cells with adeno-associated virus vectors. Biochem Biophys Res Commun 388:711–717

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi N, Ishii H, Nagai K et al (2010) Defined factors induce reprogramming of gastrointestinal cancer cells. Proc Natl Acad Sci U S A 107:40–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyoshi N, Ishii H, Nagano H et al (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8:633–638

    Article  CAS  PubMed  Google Scholar 

  • Moon JH, Heo JS, Kim JS et al (2011) Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. Cell Res 21:1305–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moretti A, Bellin M, Welling A et al (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363:1397–1409

    Article  CAS  PubMed  Google Scholar 

  • Moretti A, Laugwitz KL, Dorn T et al (2013) Pluripotent stem cell models of human heart disease. Cold Spring Harb Perspect Med 3(11):a014027

    Google Scholar 

  • Mummery C, Ward-Van Oostwaard D, Doevendans P et al (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107:2733–2740

    Article  CAS  PubMed  Google Scholar 

  • Mummery C, Van Der Heyden MA, De Boer TP et al (2007) Cardiomyocytes from human and mouse embryonic stem cells. Methods Mol Med 140:249–272

    Article  CAS  PubMed  Google Scholar 

  • Nagy K, Sung HK, Zhang P et al (2011) Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev 7:693–702

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakagawa M, Koyanagi M, Tanabe K et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa M, Takizawa N, Narita M et al (2010) Promotion of direct reprogramming by transformation-deficient Myc. Proc Natl Acad Sci U S A 107:14152–14157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano T, Ando S, Takata N et al (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–785

    Article  CAS  PubMed  Google Scholar 

  • Narsinh KH, Jia F, Robbins RC et al (2011) Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat Protoc 6:78–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noseda M, Peterkin T, Simoes FC et al (2011) Cardiopoietic factors: extracellular signals for cardiac lineage commitment. Circ Res 108:129–152

    Article  CAS  PubMed  Google Scholar 

  • Nunes SS, Miklas JW, Liu J et al (2013) Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods 10:781–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohi Y, Qin H, Hong C et al (2011) Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol 13:541–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okano H, Nakamura M, Yoshida K et al (2013) Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 112:523–533

    Article  CAS  PubMed  Google Scholar 

  • Okita K, Nakagawa M, Hyenjong H et al (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953

    Article  CAS  PubMed  Google Scholar 

  • Okita K, Matsumura Y, Sato Y et al (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8:409–412

    Article  CAS  PubMed  Google Scholar 

  • Ong SG, Lee WH, Kodo K et al (2015) MicroRNA-mediated regulation of differentiation and trans-differentiation in stem cells. Adv Drug Deliv Rev 88:3–15

    Article  CAS  PubMed  Google Scholar 

  • Orban M, Goedel A, Haas J et al (2015) Functional comparison of induced pluripotent stem cell- and blood-derived GPIIbIIIa deficient platelets. PLoS One 10:e0115978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Otsuji TG, Minami I, Kurose Y et al (2010) Progressive maturation in contracting cardiomyocytes derived from human embryonic stem cells: qualitative effects on electrophysiological responses to drugs. Stem Cell Res 4:201–213

    Article  CAS  PubMed  Google Scholar 

  • Ou DB, He Y, Chen R et al (2011) Three-dimensional co-culture facilitates the differentiation of embryonic stem cells into mature cardiomyocytes. J Cell Biochem 112:3555–3562

    Article  CAS  PubMed  Google Scholar 

  • Pagliuca FW, Millman JR, Gurtler M et al (2014) Generation of functional human pancreatic beta cells in vitro. Cell 159:428–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paige SL, Osugi T, Afanasiev OK et al (2010) Endogenous Wnt/beta-catenin signaling is required for cardiac differentiation in human embryonic stem cells. PLoS One 5:e11134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park IH, Zhao R, West JA et al (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146

    Article  CAS  PubMed  Google Scholar 

  • Passier R, Oostwaard DW, Snapper J et al (2005) Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells 23:772–780

    Article  CAS  PubMed  Google Scholar 

  • Pattanayak V, Guilinger JP, Liu DR (2014) Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Methods Enzymol 546:47–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Pera MF (2011) Stem cells: the dark side of induced pluripotency. Nature 471:46–47

    Article  CAS  PubMed  Google Scholar 

  • Polo JM, Liu S, Figueroa ME et al (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28:848–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973

    Article  CAS  PubMed  Google Scholar 

  • Rao C, Prodromakis T, Kolker L et al (2013) The effect of microgrooved culture substrates on calcium cycling of cardiac myocytes derived from human induced pluripotent stem cells. Biomaterials 34:2399–2411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raya A, Rodriguez-Piza I, Guenechea G et al (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460:53–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reardon S, Cyranoski D (2014) Japan stem-cell trial stirs envy. Nature 513:287–288

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt P, Glatza M, Hemmer K et al (2013a) Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling. PLoS One 8:e59252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhardt P, Schmid B, Burbulla LF et al (2013b) Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell 12:354–367

    Article  CAS  PubMed  Google Scholar 

  • Robertson C, Tran DD, George SC (2013) Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31:829–837

    Article  CAS  PubMed  Google Scholar 

  • Samavarchi-Tehrani P, Golipour A, David L et al (2010) Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7:64–77

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Freire V, Lee AS, Hu S et al (2014) Effect of human donor cell source on differentiation and function of cardiac induced pluripotent stem cells. J Am Coll Cardiol 64:436–448

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlaeger TM, Daheron L, Brickler TR et al (2015) A comparison of non-integrating reprogramming methods. Nat Biotechnol 33:58–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz TC, Young HY, Agulnick AD et al (2012) A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One 7:e37004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz SD, Hubschman JP, Heilwell G et al (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–720

    Article  CAS  PubMed  Google Scholar 

  • Schwartz SD, Regillo CD, Lam BL et al (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385:509–516

    Article  PubMed  Google Scholar 

  • Sebastiano V, Maeder ML, Angstman JF et al (2011) In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 29:1717–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki T, Yuasa S, Oda M et al (2010) Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 7:11–14

    Article  CAS  PubMed  Google Scholar 

  • Seki T, Yuasa S, Fukuda K (2012) Generation of induced pluripotent stem cells from a small amount of human peripheral blood using a combination of activated T cells and Sendai virus. Nat Protoc 7:718–728

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Do JT, Desponts C et al (2008) A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2:525–528

    Article  CAS  PubMed  Google Scholar 

  • Shimada H, Nakada A, Hashimoto Y et al (2010) Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Mol Reprod Dev 77:2

    Article  CAS  PubMed  Google Scholar 

  • Sinnecker D, Goedel A, Laugwitz KL et al (2013) Induced pluripotent stem cell-derived cardiomyocytes: a versatile tool for arrhythmia research. Circ Res 112:961–968

    Article  CAS  PubMed  Google Scholar 

  • Si-Tayeb K, Noto FK, Nagaoka M et al (2010) Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51:297–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith C, Gore A, Yan W et al (2014) Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell 15:12–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soldner F, Hockemeyer D, Beard C et al (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soldner F, Laganiere J, Cheng AW et al (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146:318–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somers A, Jean JC, Sommer CA et al (2010) Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells 28:1728–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song H, Chung SK, Xu Y (2010) Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. Cell Stem Cell 6:80–89

    Article  CAS  PubMed  Google Scholar 

  • Song B, Fan Y, He W et al (2015a) Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev 24:1053–1065

    Article  CAS  PubMed  Google Scholar 

  • Song WK, Park KM, Kim HJ et al (2015b) Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Rep 4:860–872

    Article  CAS  Google Scholar 

  • Spence JR, Mayhew CN, Rankin SA et al (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stadtfeld M, Nagaya M, Utikal J et al (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadtfeld M, Apostolou E, Akutsu H et al (2010) Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465:175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staerk J, Lyssiotis CA, Medeiro LA et al (2011) Pan-Src family kinase inhibitors replace Sox2 during the direct reprogramming of somatic cells. Angew Chem Int Ed Engl 50:5734–5736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens KR, Kreutziger KL, Dupras SK et al (2009) Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc Natl Acad Sci U S A 106:16568–16573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki K, Yu C, Qu J et al (2014) Targeted gene correction minimally impacts whole-genome mutational load in human-disease-specific induced pluripotent stem cell clones. Cell Stem Cell 15:31–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tada M, Takahama Y, Abe K et al (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11:1553–1558

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  • Takebe T, Sekine K, Enomura M et al (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499:481–484

    Article  CAS  PubMed  Google Scholar 

  • Thavandiran N, Dubois N, Mikryukov A et al (2013) Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. Proc Natl Acad Sci U S A 110:E4698–E4707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Tomioka I, Maeda T, Shimada H et al (2010) Generating induced pluripotent stem cells from common marmoset (Callithrix jacchus) fetal liver cells using defined factors, including Lin28. Genes Cells 15:959–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai SY, Clavel C, Kim S et al (2010) Oct4 and klf4 reprogram dermal papilla cells into induced pluripotent stem cells. Stem Cells 28:221–228

    CAS  PubMed  Google Scholar 

  • Unternaehrer JJ, Daley GQ (2011) Induced pluripotent stem cells for modelling human diseases. Philos Trans R Soc Lond B Biol Sci 366:2274–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utikal J, Maherali N, Kulalert W et al (2009) Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci 122:3502–3510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valton J, Dupuy A, Daboussi F et al (2012) Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem 287:38427–38432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veres A, Gosis BS, Ding Q et al (2014) Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell 15:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liang P, Lan F et al (2014) Genome editing of isogenic human induced pluripotent stem cells recapitulates long QT phenotype for drug testing. J Am Coll Cardiol 64:451–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren L, Manos PD, Ahfeldt T et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Ueno M, Kamiya D et al (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686

    Article  CAS  PubMed  Google Scholar 

  • Wilmut I, Schnieke AE, Mcwhir J et al (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  CAS  PubMed  Google Scholar 

  • Woltjen K, Michael IP, Mohseni P et al (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Chen J, Ren J et al (2009) Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 1:46–54

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Yi BA, Wu H et al (2012) Highly efficient derivation of ventricular cardiomyocytes from induced pluripotent stem cells with a distinct epigenetic signature. Cell Res 22:142–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Grishin D, Wang G et al (2014) Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells. Nat Commun 5:5507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Hu K, Smuga-Otto K et al (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yusa K, Rad R, Takeda J et al (2009) Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 6:363–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yusa K, Rashid ST, Strick-Marchand H et al (2011) Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478:391–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Klos M, Wilson GF et al (2012) Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ Res 111:1125–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Yin X, Qin H et al (2008) Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell 3:475–479

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Freed CR (2009) Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27:2667–2674

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Wu S, Joo JY et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Benda C, Duzinger S et al (2011) Generation of induced pluripotent stem cells from urine. J Am Soc Nephrol 22:1221–1228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu S, Li W, Zhou H et al (2010) Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7:651–655

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Lensch MW, Cahan P et al (2011) Investigating monogenic and complex diseases with pluripotent stem cells. Nat Rev Genet 12:266–275

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Maeder ML, Mali P et al (2009) Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5:97–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwaka TP, Thomson JA (2003) Homologous recombination in human embryonic stem cells. Nat Biotechnol 21:319–321

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

AM would like to acknowledge and thank the German Research Foundation and the German Ministry for Education and Research for their ongoing support of research in the laboratory. AM also acknowledge the Munich Heart Alliance, a member of the German Center for Cardiovascular Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Moretti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pane, L.S., My, I., Moretti, A. (2016). Induced Pluripotent Stem Cells in Regenerative Medicine. In: Steinhoff, G. (eds) Regenerative Medicine - from Protocol to Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-27610-6_3

Download citation

Publish with us

Policies and ethics