Induced Pluripotent Stem Cells in Regenerative Medicine

  • Luna Simona Pane
  • Ilaria My
  • Alessandra MorettiEmail author


The conversion of somatic cells into pluripotent cells is transforming the way diseases are studied and treated. Owing to their ability to differentiate into any cell type in the body and being patient-specific, induced pluripotent stem cells (iPSCs) hold great promise for disease modeling, drug discovery and regenerative medicine. Since their discovery in 2006, significant efforts have been made to understand the reprogramming process and to generate human iPSCs with potential for clinical use. Additionally, the development of advanced genome-editing platforms to increase homologous recombination efficiency, namely DNA nucleases, is making the generation of gene-corrected patient-specific iPSCs an achievable goal, with potential future therapeutic applications. Here, we review recent developments in the generation, differentiation and genetic manipulation of human iPSCs and discuss their relevance to regenerative medicine and the challenges still remaining for clinical application.


Induced pluripotent stem cells Reprogramming Retrovirus Lentivirus Transduction Zero-footprint method PiggyBac transposase Cardiac differentiation Targeting vector Macula degeneration 



AM would like to acknowledge and thank the German Research Foundation and the German Ministry for Education and Research for their ongoing support of research in the laboratory. AM also acknowledge the Munich Heart Alliance, a member of the German Center for Cardiovascular Research.


  1. Aasen T, Raya A, Barrero MJ et al (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26:1276–1284PubMedCrossRefGoogle Scholar
  2. Bailey AM (2012) Balancing tissue and tumor formation in regenerative medicine. Sci Transl Med 4:147fs128CrossRefGoogle Scholar
  3. Ban H, Nishishita N, Fusaki N et al (2011) Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A 108:14234–14239PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bao L, He L, Chen J et al (2011) Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Res 21:600–608PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bar-Nur O, Russ HA, Efrat S et al (2011) Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 9:17–23PubMedCrossRefGoogle Scholar
  6. Bellin M, Casini S, Davis RP et al (2013) Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome. EMBO J 32:3161–3175PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bett GC, Kaplan AD, Lis A et al (2013) Electronic “expression” of the inward rectifier in cardiocytes derived from human-induced pluripotent stem cells. Heart Rhythm 10:1903–1910PubMedCrossRefGoogle Scholar
  8. Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512PubMedCrossRefGoogle Scholar
  9. Brambrink T, Foreman R, Welstead GG et al (2008) Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2:151–159PubMedPubMedCentralCrossRefGoogle Scholar
  10. Burridge PW, Keller G, Gold JD et al (2012) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10:16–28PubMedPubMedCentralCrossRefGoogle Scholar
  11. Burridge PW, Matsa E, Shukla P et al (2014) Chemically defined generation of human cardiomyocytes. Nat Methods 11:855–860PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cao N, Liang H, Huang J et al (2013) Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions. Cell Res 23:1119–1132PubMedPubMedCentralCrossRefGoogle Scholar
  13. Carette JE, Pruszak J, Varadarajan M et al (2010) Generation of iPSCs from cultured human malignant cells. Blood 115:4039–4042PubMedPubMedCentralCrossRefGoogle Scholar
  14. Carpenter MK, Frey-Vasconcells J, Rao MS (2009) Developing safe therapies from human pluripotent stem cells. Nat Biotechnol 27:606–613PubMedCrossRefGoogle Scholar
  15. Carroll D (2011a) Genome engineering with zinc-finger nucleases. Genetics 188:773–782PubMedPubMedCentralCrossRefGoogle Scholar
  16. Carroll D (2011b) Zinc-finger nucleases: a panoramic view. Curr Gene Ther 11:2–10PubMedCrossRefGoogle Scholar
  17. Chang CW, Lai YS, Pawlik KM et al (2009) Polycistronic lentiviral vector for “hit and run” reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells 27:1042–1049PubMedCrossRefGoogle Scholar
  18. Chen G, Gulbranson DR, Hou Z et al (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8:424–429PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cherry AB, Daley GQ (2013) Reprogrammed cells for disease modeling and regenerative medicine. Annu Rev Med 64:277–290PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chou BK, Mali P, Huang X et al (2011) Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res 21:518–529PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cowan CA, Atienza J, Melton DA et al (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309:1369–1373PubMedCrossRefGoogle Scholar
  23. Delacote F, Lopez BS (2008) Importance of the cell cycle phase for the choice of the appropriate DSB repair pathway, for genome stability maintenance: the trans-S double-strand break repair model. Cell Cycle 7:33–38PubMedCrossRefGoogle Scholar
  24. Devalla HD, Schwach V, Ford JW et al (2015) Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol Med 7:394–410PubMedPubMedCentralCrossRefGoogle Scholar
  25. Ding Q, Lee YK, Schaefer EA et al (2013a) A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 12:238–251PubMedPubMedCentralCrossRefGoogle Scholar
  26. Ding Q, Regan SN, Xia Y et al (2013b) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12:393–394PubMedPubMedCentralCrossRefGoogle Scholar
  27. Emmert MY, Wolint P, Wickboldt N et al (2013) Human stem cell-based three-dimensional microtissues for advanced cardiac cell therapies. Biomaterials 34:6339–6354PubMedCrossRefGoogle Scholar
  28. Esteban MA, Xu J, Yang J et al (2009) Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 284:17634–17640PubMedPubMedCentralCrossRefGoogle Scholar
  29. Evans SM, Yelon D, Conlon FL et al (2010) Myocardial lineage development. Circ Res 107:1428–1444PubMedPubMedCentralCrossRefGoogle Scholar
  30. Ezashi T, Telugu BP, Alexenko AP et al (2009) Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci U S A 106:10993–10998PubMedPubMedCentralCrossRefGoogle Scholar
  31. Feng B, Jiang J, Kraus P et al (2009) Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol 11:197–203PubMedCrossRefGoogle Scholar
  32. Flynn R, Grundmann A, Renz P et al (2015) CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp Hematol 43(10):838–848.e3PubMedPubMedCentralCrossRefGoogle Scholar
  33. Frey-Vasconcells J, Whittlesey KJ, Baum E et al (2012) Translation of stem cell research: points to consider in designing preclinical animal studies. Stem Cells Transl Med 1:353–358PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fu JD, Rushing SN, Lieu DK et al (2011) Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes. PLoS One 6:e27417PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fusaki N, Ban H, Nishiyama A et al (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fussner E, Djuric U, Strauss M et al (2011) Constitutive heterochromatin reorganization during somatic cell reprogramming. EMBO J 30:1778–1789PubMedPubMedCentralCrossRefGoogle Scholar
  38. Garry DJ, Olson EN (2006) A common progenitor at the heart of development. Cell 127:1101–1104PubMedCrossRefGoogle Scholar
  39. Gonzalez F, Barragan Monasterio M, Tiscornia G et al (2009) Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proc Natl Acad Sci U S A 106:8918–8922PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gore A, Li Z, Fung HL et al (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471:63–67PubMedPubMedCentralCrossRefGoogle Scholar
  41. Graichen R, Xu X, Braam SR et al (2008) Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation 76:357–370PubMedCrossRefGoogle Scholar
  42. Gramlich M, Pane LS, Zhou Q et al (2015) Antisense-mediated exon skipping: a therapeutic strategy for titin-based dilated cardiomyopathy. EMBO Mol Med 7:562–576PubMedPubMedCentralCrossRefGoogle Scholar
  43. Guo L, Abrams RM, Babiarz JE et al (2011) Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci 123:281–289PubMedCrossRefGoogle Scholar
  44. Gupta MK, Illich DJ, Gaarz A et al (2010) Global transcriptional profiles of beating clusters derived from human induced pluripotent stem cells and embryonic stem cells are highly similar. BMC Dev Biol 10:98PubMedPubMedCentralCrossRefGoogle Scholar
  45. Haase A, Olmer R, Schwanke K et al (2009) Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell 5:434–441PubMedCrossRefGoogle Scholar
  46. Han X, Han J, Ding F et al (2011) Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Res 21:1509–1512PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hanna J, Markoulaki S, Schorderet P et al (2008) Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133:250–264PubMedPubMedCentralCrossRefGoogle Scholar
  48. Heng JC, Feng B, Han J et al (2010) The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell 6:167–174PubMedCrossRefGoogle Scholar
  49. Hirt MN, Boeddinghaus J, Mitchell A et al (2014a) Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation. J Mol Cell Cardiol 74:151–161PubMedCrossRefGoogle Scholar
  50. Hirt MN, Hansen A, Eschenhagen T (2014b) Cardiac tissue engineering: state of the art. Circ Res 114:354–367PubMedCrossRefGoogle Scholar
  51. Hou P, Li Y, Zhang X et al (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341:651–654PubMedCrossRefGoogle Scholar
  52. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278PubMedPubMedCentralCrossRefGoogle Scholar
  53. Huangfu D, Maehr R, Guo W et al (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26:795–797PubMedCrossRefGoogle Scholar
  54. Huch M, Koo BK (2015) Modeling mouse and human development using organoid cultures. Development 142:3113–3125PubMedCrossRefGoogle Scholar
  55. Humphreys BD (2014) Kidney structures differentiated from stem cells. Nat Cell Biol 16:19–21PubMedCrossRefGoogle Scholar
  56. Ichida JK, Blanchard J, Lam K et al (2009) A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell 5:491–503PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ishino Y, Shinagawa H, Makino K et al (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433PubMedPubMedCentralGoogle Scholar
  58. Jansen R, Embden JD, Gaastra W et al (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575PubMedCrossRefGoogle Scholar
  59. Jia F, Wilson KD, Sun N et al (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7:197–199PubMedPubMedCentralCrossRefGoogle Scholar
  60. Jiang J, Lv W, Ye X et al (2013) Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation. Cell Res 23:92–106PubMedPubMedCentralCrossRefGoogle Scholar
  61. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821PubMedCrossRefGoogle Scholar
  62. Jung CB, Moretti A, Mederos Y, Schnitzler M et al (2012) Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Mol Med 4:180–191PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kaji K, Norrby K, Paca A et al (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kamao H, Mandai M, Okamoto S et al (2014) Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep 2:205–218CrossRefGoogle Scholar
  65. Kang X, Yu Q, Huang Y et al (2015) Effects of integrating and non-integrating reprogramming methods on copy number variation and genomic stability of human induced pluripotent stem cells. PLoS One 10:e0131128PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kawamura M, Miyagawa S, Miki K et al (2012) Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126:S29–S37PubMedCrossRefGoogle Scholar
  67. Kehat I, Kenyagin-Karsenti D, Snir M et al (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108:407–414PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kensah G, Roa Lara A, Dahlmann J et al (2013) Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro. Eur Heart J 34:1134–1146PubMedCrossRefGoogle Scholar
  69. Khan IF, Hirata RK, Wang PR et al (2010) Engineering of human pluripotent stem cells by AAV-mediated gene targeting. Mol Ther 18:1192–1199PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kim D, Kim CH, Moon JI et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kim K, Doi A, Wen B et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kim J, Lengner CJ, Kirak O et al (2011a) Reprogramming of postnatal neurons into induced pluripotent stem cells by defined factors. Stem Cells 29:992–1000PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kim K, Zhao R, Doi A et al (2011b) Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat Biotechnol 29:1117–1119PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kim HT, Lee KI, Kim DW et al (2013) An ECM-based culture system for the generation and maintenance of xeno-free human iPS cells. Biomaterials 34:1041–1050PubMedCrossRefGoogle Scholar
  75. Kiskinis E, Sandoe J, Williams LA et al (2014) Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell 14:781–795PubMedPubMedCentralCrossRefGoogle Scholar
  76. Laflamme MA, Chen KY, Naumova AV et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024PubMedCrossRefGoogle Scholar
  77. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125PubMedCrossRefGoogle Scholar
  78. Lancaster MA, Renner M, Martin CA et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379PubMedCrossRefGoogle Scholar
  79. Laurent LC, Ulitsky I, Slavin I et al (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8:106–118PubMedPubMedCentralCrossRefGoogle Scholar
  80. Li W, Wei W, Zhu S et al (2009) Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4:16–19PubMedCrossRefGoogle Scholar
  81. Li R, Liang J, Ni S et al (2010) A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7:51–63PubMedCrossRefGoogle Scholar
  82. Li T, Huang S, Zhao X et al (2011) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 39:6315–6325PubMedPubMedCentralCrossRefGoogle Scholar
  83. Li M, Suzuki K, Kim NY et al (2014) A cut above the rest: targeted genome editing technologies in human pluripotent stem cells. J Biol Chem 289:4594–4599PubMedPubMedCentralCrossRefGoogle Scholar
  84. Li HL, Fujimoto N, Sasakawa N et al (2015) Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep 4:143–154CrossRefGoogle Scholar
  85. Lian X, Hsiao C, Wilson G et al (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109:E1848–E1857PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lian X, Zhang J, Azarin SM et al (2013) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc 8:162–175PubMedPubMedCentralCrossRefGoogle Scholar
  87. Liang P, Lan F, Lee AS et al (2013) Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127:1677–1691PubMedCrossRefGoogle Scholar
  88. Liao J, Cui C, Chen S et al (2009) Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 4:11–15PubMedCrossRefGoogle Scholar
  89. Lieu DK, Fu JD, Chiamvimonvat N et al (2013) Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Arrhythm Electrophysiol 6:191–201PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lister R, Pelizzola M, Kida YS et al (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471:68–73PubMedPubMedCentralCrossRefGoogle Scholar
  91. Liu H, Zhu F, Yong J et al (2008) Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3:587–590PubMedCrossRefGoogle Scholar
  92. Loh YH, Agarwal S, Park IH et al (2009) Generation of induced pluripotent stem cells from human blood. Blood 113:5476–5479PubMedPubMedCentralCrossRefGoogle Scholar
  93. Lundy SD, Zhu WZ, Regnier M et al (2013) Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev 22:1991–2002PubMedPubMedCentralCrossRefGoogle Scholar
  94. Luo J, Suhr ST, Chang EA et al (2011) Generation of leukemia inhibitory factor and basic fibroblast growth factor-dependent induced pluripotent stem cells from canine adult somatic cells. Stem Cells Dev 20:1669–1678PubMedPubMedCentralCrossRefGoogle Scholar
  95. Ma Z, Wang J, Loskill P et al (2015) Self-organizing human cardiac microchambers mediated by geometric confinement. Nat Commun 6:7413PubMedPubMedCentralCrossRefGoogle Scholar
  96. Maherali N, Hochedlinger K (2009) Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Curr Biol 19:1718–1723PubMedPubMedCentralCrossRefGoogle Scholar
  97. Mali P, Chou BK, Yen J et al (2010) Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells 28:713–720PubMedPubMedCentralCrossRefGoogle Scholar
  98. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826PubMedPubMedCentralCrossRefGoogle Scholar
  99. Marson A, Foreman R, Chevalier B et al (2008) Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell 3:132–135PubMedPubMedCentralCrossRefGoogle Scholar
  100. Mayshar Y, Ben-David U, Lavon N et al (2010) Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7:521–531PubMedCrossRefGoogle Scholar
  101. Menasche P, Vanneaux V, Fabreguettes JR et al (2015) Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience. Eur Heart J 36:743–750PubMedCrossRefGoogle Scholar
  102. Mikkelsen TS, Hanna J, Zhang X et al (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454:49–55PubMedPubMedCentralCrossRefGoogle Scholar
  103. Mitsui K, Suzuki K, Aizawa E et al (2009) Gene targeting in human pluripotent stem cells with adeno-associated virus vectors. Biochem Biophys Res Commun 388:711–717PubMedCrossRefGoogle Scholar
  104. Miyoshi N, Ishii H, Nagai K et al (2010) Defined factors induce reprogramming of gastrointestinal cancer cells. Proc Natl Acad Sci U S A 107:40–45PubMedPubMedCentralCrossRefGoogle Scholar
  105. Miyoshi N, Ishii H, Nagano H et al (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8:633–638PubMedCrossRefGoogle Scholar
  106. Moon JH, Heo JS, Kim JS et al (2011) Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. Cell Res 21:1305–1315PubMedPubMedCentralCrossRefGoogle Scholar
  107. Moretti A, Bellin M, Welling A et al (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363:1397–1409PubMedCrossRefGoogle Scholar
  108. Moretti A, Laugwitz KL, Dorn T et al (2013) Pluripotent stem cell models of human heart disease. Cold Spring Harb Perspect Med 3(11):a014027Google Scholar
  109. Mummery C, Ward-Van Oostwaard D, Doevendans P et al (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107:2733–2740PubMedCrossRefGoogle Scholar
  110. Mummery C, Van Der Heyden MA, De Boer TP et al (2007) Cardiomyocytes from human and mouse embryonic stem cells. Methods Mol Med 140:249–272PubMedCrossRefGoogle Scholar
  111. Nagy K, Sung HK, Zhang P et al (2011) Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev 7:693–702PubMedPubMedCentralCrossRefGoogle Scholar
  112. Nakagawa M, Koyanagi M, Tanabe K et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106PubMedCrossRefGoogle Scholar
  113. Nakagawa M, Takizawa N, Narita M et al (2010) Promotion of direct reprogramming by transformation-deficient Myc. Proc Natl Acad Sci U S A 107:14152–14157PubMedPubMedCentralCrossRefGoogle Scholar
  114. Nakano T, Ando S, Takata N et al (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–785PubMedCrossRefGoogle Scholar
  115. Narsinh KH, Jia F, Robbins RC et al (2011) Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat Protoc 6:78–88PubMedPubMedCentralCrossRefGoogle Scholar
  116. Noseda M, Peterkin T, Simoes FC et al (2011) Cardiopoietic factors: extracellular signals for cardiac lineage commitment. Circ Res 108:129–152PubMedCrossRefGoogle Scholar
  117. Nunes SS, Miklas JW, Liu J et al (2013) Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods 10:781–787PubMedPubMedCentralCrossRefGoogle Scholar
  118. Ohi Y, Qin H, Hong C et al (2011) Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol 13:541–549PubMedPubMedCentralCrossRefGoogle Scholar
  119. Okano H, Nakamura M, Yoshida K et al (2013) Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 112:523–533PubMedCrossRefGoogle Scholar
  120. Okita K, Nakagawa M, Hyenjong H et al (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953PubMedCrossRefGoogle Scholar
  121. Okita K, Matsumura Y, Sato Y et al (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8:409–412PubMedCrossRefGoogle Scholar
  122. Ong SG, Lee WH, Kodo K et al (2015) MicroRNA-mediated regulation of differentiation and trans-differentiation in stem cells. Adv Drug Deliv Rev 88:3–15PubMedCrossRefGoogle Scholar
  123. Orban M, Goedel A, Haas J et al (2015) Functional comparison of induced pluripotent stem cell- and blood-derived GPIIbIIIa deficient platelets. PLoS One 10:e0115978PubMedPubMedCentralCrossRefGoogle Scholar
  124. Otsuji TG, Minami I, Kurose Y et al (2010) Progressive maturation in contracting cardiomyocytes derived from human embryonic stem cells: qualitative effects on electrophysiological responses to drugs. Stem Cell Res 4:201–213PubMedCrossRefGoogle Scholar
  125. Ou DB, He Y, Chen R et al (2011) Three-dimensional co-culture facilitates the differentiation of embryonic stem cells into mature cardiomyocytes. J Cell Biochem 112:3555–3562PubMedCrossRefGoogle Scholar
  126. Pagliuca FW, Millman JR, Gurtler M et al (2014) Generation of functional human pancreatic beta cells in vitro. Cell 159:428–439PubMedPubMedCentralCrossRefGoogle Scholar
  127. Paige SL, Osugi T, Afanasiev OK et al (2010) Endogenous Wnt/beta-catenin signaling is required for cardiac differentiation in human embryonic stem cells. PLoS One 5:e11134PubMedPubMedCentralCrossRefGoogle Scholar
  128. Park IH, Zhao R, West JA et al (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146PubMedCrossRefGoogle Scholar
  129. Passier R, Oostwaard DW, Snapper J et al (2005) Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells 23:772–780PubMedCrossRefGoogle Scholar
  130. Pattanayak V, Guilinger JP, Liu DR (2014) Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Methods Enzymol 546:47–78PubMedPubMedCentralCrossRefGoogle Scholar
  131. Pera MF (2011) Stem cells: the dark side of induced pluripotency. Nature 471:46–47PubMedCrossRefGoogle Scholar
  132. Polo JM, Liu S, Figueroa ME et al (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28:848–855PubMedPubMedCentralCrossRefGoogle Scholar
  133. Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973PubMedCrossRefGoogle Scholar
  134. Rao C, Prodromakis T, Kolker L et al (2013) The effect of microgrooved culture substrates on calcium cycling of cardiac myocytes derived from human induced pluripotent stem cells. Biomaterials 34:2399–2411PubMedPubMedCentralCrossRefGoogle Scholar
  135. Raya A, Rodriguez-Piza I, Guenechea G et al (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460:53–59PubMedPubMedCentralCrossRefGoogle Scholar
  136. Reardon S, Cyranoski D (2014) Japan stem-cell trial stirs envy. Nature 513:287–288PubMedCrossRefGoogle Scholar
  137. Reinhardt P, Glatza M, Hemmer K et al (2013a) Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling. PLoS One 8:e59252PubMedPubMedCentralCrossRefGoogle Scholar
  138. Reinhardt P, Schmid B, Burbulla LF et al (2013b) Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell 12:354–367PubMedCrossRefGoogle Scholar
  139. Robertson C, Tran DD, George SC (2013) Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31:829–837PubMedCrossRefGoogle Scholar
  140. Samavarchi-Tehrani P, Golipour A, David L et al (2010) Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7:64–77PubMedCrossRefGoogle Scholar
  141. Sanchez-Freire V, Lee AS, Hu S et al (2014) Effect of human donor cell source on differentiation and function of cardiac induced pluripotent stem cells. J Am Coll Cardiol 64:436–448PubMedPubMedCentralCrossRefGoogle Scholar
  142. Schlaeger TM, Daheron L, Brickler TR et al (2015) A comparison of non-integrating reprogramming methods. Nat Biotechnol 33:58–63PubMedPubMedCentralCrossRefGoogle Scholar
  143. Schulz TC, Young HY, Agulnick AD et al (2012) A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One 7:e37004PubMedPubMedCentralCrossRefGoogle Scholar
  144. Schwartz SD, Hubschman JP, Heilwell G et al (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–720PubMedCrossRefGoogle Scholar
  145. Schwartz SD, Regillo CD, Lam BL et al (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385:509–516PubMedCrossRefGoogle Scholar
  146. Sebastiano V, Maeder ML, Angstman JF et al (2011) In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 29:1717–1726PubMedPubMedCentralCrossRefGoogle Scholar
  147. Seki T, Yuasa S, Oda M et al (2010) Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 7:11–14PubMedCrossRefGoogle Scholar
  148. Seki T, Yuasa S, Fukuda K (2012) Generation of induced pluripotent stem cells from a small amount of human peripheral blood using a combination of activated T cells and Sendai virus. Nat Protoc 7:718–728PubMedCrossRefGoogle Scholar
  149. Shi Y, Do JT, Desponts C et al (2008) A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2:525–528PubMedCrossRefGoogle Scholar
  150. Shimada H, Nakada A, Hashimoto Y et al (2010) Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Mol Reprod Dev 77:2PubMedCrossRefGoogle Scholar
  151. Sinnecker D, Goedel A, Laugwitz KL et al (2013) Induced pluripotent stem cell-derived cardiomyocytes: a versatile tool for arrhythmia research. Circ Res 112:961–968PubMedCrossRefGoogle Scholar
  152. Si-Tayeb K, Noto FK, Nagaoka M et al (2010) Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51:297–305PubMedPubMedCentralCrossRefGoogle Scholar
  153. Smith C, Gore A, Yan W et al (2014) Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell 15:12–13PubMedPubMedCentralCrossRefGoogle Scholar
  154. Soldner F, Hockemeyer D, Beard C et al (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964–977PubMedPubMedCentralCrossRefGoogle Scholar
  155. Soldner F, Laganiere J, Cheng AW et al (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146:318–331PubMedPubMedCentralCrossRefGoogle Scholar
  156. Somers A, Jean JC, Sommer CA et al (2010) Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells 28:1728–1740PubMedPubMedCentralCrossRefGoogle Scholar
  157. Song H, Chung SK, Xu Y (2010) Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. Cell Stem Cell 6:80–89PubMedCrossRefGoogle Scholar
  158. Song B, Fan Y, He W et al (2015a) Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev 24:1053–1065PubMedCrossRefGoogle Scholar
  159. Song WK, Park KM, Kim HJ et al (2015b) Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Rep 4:860–872CrossRefGoogle Scholar
  160. Spence JR, Mayhew CN, Rankin SA et al (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–109PubMedPubMedCentralCrossRefGoogle Scholar
  161. Stadtfeld M, Nagaya M, Utikal J et al (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949PubMedPubMedCentralCrossRefGoogle Scholar
  162. Stadtfeld M, Apostolou E, Akutsu H et al (2010) Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465:175–181PubMedPubMedCentralCrossRefGoogle Scholar
  163. Staerk J, Lyssiotis CA, Medeiro LA et al (2011) Pan-Src family kinase inhibitors replace Sox2 during the direct reprogramming of somatic cells. Angew Chem Int Ed Engl 50:5734–5736PubMedPubMedCentralCrossRefGoogle Scholar
  164. Stevens KR, Kreutziger KL, Dupras SK et al (2009) Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc Natl Acad Sci U S A 106:16568–16573PubMedPubMedCentralCrossRefGoogle Scholar
  165. Suzuki K, Yu C, Qu J et al (2014) Targeted gene correction minimally impacts whole-genome mutational load in human-disease-specific induced pluripotent stem cell clones. Cell Stem Cell 15:31–36PubMedPubMedCentralCrossRefGoogle Scholar
  166. Tada M, Takahama Y, Abe K et al (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11:1553–1558PubMedCrossRefGoogle Scholar
  167. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  168. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRefGoogle Scholar
  169. Takebe T, Sekine K, Enomura M et al (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499:481–484PubMedCrossRefGoogle Scholar
  170. Thavandiran N, Dubois N, Mikryukov A et al (2013) Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. Proc Natl Acad Sci U S A 110:E4698–E4707PubMedPubMedCentralCrossRefGoogle Scholar
  171. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar
  172. Tomioka I, Maeda T, Shimada H et al (2010) Generating induced pluripotent stem cells from common marmoset (Callithrix jacchus) fetal liver cells using defined factors, including Lin28. Genes Cells 15:959–969PubMedPubMedCentralCrossRefGoogle Scholar
  173. Tsai SY, Clavel C, Kim S et al (2010) Oct4 and klf4 reprogram dermal papilla cells into induced pluripotent stem cells. Stem Cells 28:221–228PubMedGoogle Scholar
  174. Unternaehrer JJ, Daley GQ (2011) Induced pluripotent stem cells for modelling human diseases. Philos Trans R Soc Lond B Biol Sci 366:2274–2285PubMedPubMedCentralCrossRefGoogle Scholar
  175. Utikal J, Maherali N, Kulalert W et al (2009) Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci 122:3502–3510PubMedPubMedCentralCrossRefGoogle Scholar
  176. Valton J, Dupuy A, Daboussi F et al (2012) Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem 287:38427–38432PubMedPubMedCentralCrossRefGoogle Scholar
  177. Veres A, Gosis BS, Ding Q et al (2014) Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell 15:27–30PubMedPubMedCentralCrossRefGoogle Scholar
  178. Wang Y, Liang P, Lan F et al (2014) Genome editing of isogenic human induced pluripotent stem cells recapitulates long QT phenotype for drug testing. J Am Coll Cardiol 64:451–459PubMedPubMedCentralCrossRefGoogle Scholar
  179. Warren L, Manos PD, Ahfeldt T et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630PubMedPubMedCentralCrossRefGoogle Scholar
  180. Watanabe K, Ueno M, Kamiya D et al (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686PubMedCrossRefGoogle Scholar
  181. Wilmut I, Schnieke AE, Mcwhir J et al (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813PubMedCrossRefGoogle Scholar
  182. Woltjen K, Michael IP, Mohseni P et al (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770PubMedPubMedCentralCrossRefGoogle Scholar
  183. Wu Z, Chen J, Ren J et al (2009) Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 1:46–54PubMedCrossRefGoogle Scholar
  184. Xu H, Yi BA, Wu H et al (2012) Highly efficient derivation of ventricular cardiomyocytes from induced pluripotent stem cells with a distinct epigenetic signature. Cell Res 22:142–154PubMedPubMedCentralCrossRefGoogle Scholar
  185. Yang L, Grishin D, Wang G et al (2014) Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells. Nat Commun 5:5507PubMedPubMedCentralCrossRefGoogle Scholar
  186. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920PubMedCrossRefGoogle Scholar
  187. Yu J, Hu K, Smuga-Otto K et al (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801PubMedPubMedCentralCrossRefGoogle Scholar
  188. Yusa K, Rad R, Takeda J et al (2009) Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 6:363–369PubMedPubMedCentralCrossRefGoogle Scholar
  189. Yusa K, Rashid ST, Strick-Marchand H et al (2011) Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478:391–394PubMedPubMedCentralCrossRefGoogle Scholar
  190. Zhang J, Klos M, Wilson GF et al (2012) Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ Res 111:1125–1136PubMedPubMedCentralCrossRefGoogle Scholar
  191. Zhao Y, Yin X, Qin H et al (2008) Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell 3:475–479PubMedCrossRefGoogle Scholar
  192. Zhou W, Freed CR (2009) Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27:2667–2674PubMedCrossRefGoogle Scholar
  193. Zhou H, Wu S, Joo JY et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384PubMedCrossRefGoogle Scholar
  194. Zhou T, Benda C, Duzinger S et al (2011) Generation of induced pluripotent stem cells from urine. J Am Soc Nephrol 22:1221–1228PubMedPubMedCentralCrossRefGoogle Scholar
  195. Zhu S, Li W, Zhou H et al (2010) Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7:651–655PubMedCrossRefGoogle Scholar
  196. Zhu H, Lensch MW, Cahan P et al (2011) Investigating monogenic and complex diseases with pluripotent stem cells. Nat Rev Genet 12:266–275PubMedCrossRefGoogle Scholar
  197. Zou J, Maeder ML, Mali P et al (2009) Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5:97–110PubMedPubMedCentralCrossRefGoogle Scholar
  198. Zwaka TP, Thomson JA (2003) Homologous recombination in human embryonic stem cells. Nat Biotechnol 21:319–321PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Luna Simona Pane
    • 1
  • Ilaria My
    • 1
  • Alessandra Moretti
    • 1
    • 2
    Email author
  1. 1.I. Medical Department – CardiologyKlinikum rechts der Isar – Technische Universität MünchenMunichGermany
  2. 2.DZHK (German Centre for Cardiovascular Research) – Partner Site Munich Heart AllianceMunichGermany

Personalised recommendations