Skip to main content

Abstract

Parthenogenesis (<Gr. parthenos virgin + genesis birth) a phenomenon of undoubted biological interest which leads to the production of living young in many types of animals, as well as in plants. The word parthenogenesis came first time in mind of Richard Owen (Owen R. On parthenogenesis or the successive production of procreating individuals from a single ovum. John van Voorst, London, 1849) who used it to define the process of ‘procreation without the immediate influence of male’; this includes the various processes such as fission, budding as well as the development of unimpregnated ova. After him different authors have attempted to redefine the term accordingly. Beatty (Beatty RA. Ferti 1:413–440. Metz and A. Monroy. Academic Press, New York/London, 1967) has defined the term parthenogenesis as ‘the production of an embryo from a female gamete without any genetic contribution from a male gamete’, and with or without eventual development into an adult. An individual resulted from the parthenogenesis is variously referred to as ‘parthenogenone’, ‘parthenogene’ or ‘parthenote’. Phenomenon parthenogenesis differs from gynogenesis; in which the oocyte is stimulated by aspermatozoa to complete the second meiotic division and to undergo further development but the male gamete will not contribute genetically to the developing embryos and from androgenesis; in such situation the egg is also activated by a spermatozoa but only the male genome take part in the subsequent development (Kaufman MH. Early mammalian development: parthenogenetic studies. Cambridge University Press, Cambridge, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen ND, Barton SC, Hilton K, Norris ML, Surani MA (1994) A functional analysis of imprinting in parthenogenetic embryonic stem cells. Development 120:1473–1482

    CAS  PubMed  Google Scholar 

  • Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M (2001) Insulin production by Human embryonic stem cells. Diabetes 50(8):1691–1697

    Article  CAS  PubMed  Google Scholar 

  • Austin CR (1956) Activation of eggs by hypothermia in rats and hamsters. J Exp Biol 33:338–347

    Google Scholar 

  • Balakier H, Tarkowski AK (1976) Diploid parthenogenetic mouse embryos produced by heat-shock and cytochalasin B. J Embryol Exp Morphol 35:25–39

    CAS  PubMed  Google Scholar 

  • Barton SC, Surani MA, Norris ML (1984) Role of paternal and maternal genomes in mouse development. Nature 311:374–376

    Article  CAS  PubMed  Google Scholar 

  • Beatty RA (1967) Parthenogenesis in vertebrates. In Ferti 1:413–440. Metz and A. Monroy. Academic Press, New York/London

    Google Scholar 

  • Bonde SW, Naquvi SMK, Mittal JP (2000) Comparison of oocyte recovery from surface follicles of sheep and goat ovaries. Int J Anim Sci 15:1–4

    Google Scholar 

  • Borghol N, Lornage J, Blachere T, SophieGarret A, Lefevre A (2006) Epigenetic status of the H19 locus in human oocytes following in vitro maturation. Genomics 87:417–426

    Article  CAS  PubMed  Google Scholar 

  • Brevini TAL, Gandolfi F (2008) Parthenotes as a source of embryonic stem cells. Cell Prolif 41(1):20–30

    PubMed  Google Scholar 

  • Brivanlou AH, Gage FH, Jaenisch R, Jessell T, Melton D, Rossant J (2003) Stem cells. Setting standards for human embryonic stem cells. Science 300(5621):913–916 (comment)

    Google Scholar 

  • Campbell KHS (1999) Nuclear equivalence, nuclear transfer, and the cell cycle. Cloning 1:3–15

    Article  CAS  PubMed  Google Scholar 

  • Campbell KD, Reed WA, White KL (2000) Ability of integrins to mediate fertilization, intracellular calcium release, and parthenogenetic development in bovine oocytes. Biol Reprod 62:1702–1709

    Article  CAS  PubMed  Google Scholar 

  • Cheng L (2008) More new lines of human parthenogenetic embryonic stem cells. Cell Res 18(2):215–217

    Article  CAS  PubMed  Google Scholar 

  • Cibelli JB, Grant KA, Chapman KB, Cunniff K, Worst T, Green HL, Walker SJ, Gutin PH, Vilner L, Tabar V, Dominko T, Kane J, Wettstein PJ, Lanza RP, Studer L, Vrana KE, West MD (2002) Parthenogenetic stem cells in nonhuman primates. Science 295:819

    Article  CAS  PubMed  Google Scholar 

  • Cowan CA, Klimanskaya I, McMahon J et al (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350(13):1353–1356 (see comment)

    Google Scholar 

  • Crister ES, Leifried-Rutledge ML, Eyestone WH, Northy DL, First NL (1986) Acquisition of development and competence during maturation in vitro. Theriogenology 25:15

    Google Scholar 

  • De Filippo RE, Yoo JJ, Atala A (2003) Engineering of vaginal tissue in-vivo. Tissue Eng 9(2):301–306

    Article  PubMed  Google Scholar 

  • Dighe V, Clepper L, Pedersen D et al (2008) Heterozygous embryonic stem cell lines derived from nonhuman primate parthenotes. Stem Cells 26(3):756–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ducibella T, Huneau D, Angelichio E, Xu Z, Schultz RM, Kopf GS, Fissore R, Madoux S, Ozil JP (2002) Egg-to-embryo transition is driven by differential responses to Ca2+ oscillation number. Dev Biol 250:280–291

    Article  CAS  PubMed  Google Scholar 

  • Dupont G (1998) Link between fertilization-induced Ca2+ oscillations and relief from metaphase II arrest in mammalian eggs: a model based on calmodulin-dependent kinase II activation. Biophys Chem 72:153–167

    Article  CAS  PubMed  Google Scholar 

  • Edwards RG (1965) Maturation in-vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature 208:349–351

    Article  CAS  PubMed  Google Scholar 

  • Eggan K, Akutsu H, Loring J, Jackson-Grusby L, Klemm M, Rideout WM III et al (2001) Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci U S A 98:6209–6214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everett CA, West JD (1998) Evidence for selection against tetraploid cells in tetraploiddiploid mouse chimaeras before the late blastocyst stage. Genet Res 72:225–228

    Article  CAS  PubMed  Google Scholar 

  • Fang ZF, Gai H, Huang YZ et al (2006) Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos. Exp Cell Res 312(18):3669–3682

    Article  CAS  PubMed  Google Scholar 

  • Foote RH, Simkin ME (1993) Use of gonadotropic releasing hormone for ovulating the rabbit model. Lab Anim Sci 43:383–385

    CAS  PubMed  Google Scholar 

  • Fukui Y, Sawai K, Furudate M, Sato N, Iwazumi Y, Ohsaki K (1992) Parthenogenetic development of bovine oocytes treated with ethanol and cytochalasin B after in vitro maturation. Mol Reprod Dev 33(3):357–362

    Article  CAS  PubMed  Google Scholar 

  • Funahashi H, Cantley TC, Stumpf TT, Terlouw SL, Day BN (1994) In vitro development of in vitro matured porcine oocytes following chemical activation or in vitro fertilization. Biol Reprod 50:1072–1077

    Article  CAS  PubMed  Google Scholar 

  • Gebert C et al (2006) The bovine IGF2 gene is differentially methylated in oocyte and sperm DNA. Genomics 88:222–229

    Article  CAS  PubMed  Google Scholar 

  • Gomez MC, Jenkins JA, Giraldo A, Harris RF, King A, Dresser BL et al (2003) Nuclear transfer of synchronized African Wild Cat somatic cells into enucleated domestic cat oocytes. Biol Reprod 69:1032–1041

    Article  CAS  PubMed  Google Scholar 

  • Graham CF (1974) The production of parthenogenetic mammalian embryos and their use in biological research. Biol Rev 49:399–422

    Article  CAS  PubMed  Google Scholar 

  • Gupta PSP, Nandi S, Ravindranantha BN, Sharma PV (2002) Invitro maturation of buffalo oocytes with epidermal growth factors and fibroblast growth factor. Ind J Anim Sci 72:20–23

    Google Scholar 

  • Hagemann LJ, Hillery-Weinhold FL, Leibfried-Rutledge ML, First NL (1995) Activation of murine oocytes with Ca2+ ionophore and cycloheximide. J Exp Zool 271:57–61

    Article  CAS  PubMed  Google Scholar 

  • Henery CC, Kaufman MH (1992) Cleavage rate of haploid and diploid parthenogenetic mouse embryos during the preimplantation period. Mol Reprod Dev 31:258–263

    Article  CAS  PubMed  Google Scholar 

  • Hipp J, Atala A (2004) Tissue engineering, stem cells, cloning, and parthenogenesis: new paradigms for therapy. J Exp Clin Assist Reprod 1:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hochedlinger K, Jaenisch R (2002) Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415:1035–1038

    Article  CAS  PubMed  Google Scholar 

  • Itskovitz-Eldor J, Schuldiner M, Karsenti D et al (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6(2):88–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong YJ, Cui XS, Kim BK, Kim IH, Kim T, Chung YB, Kim NH (2005) Haploidy influences Bak and Bcl-xL mRNA expression and increases incidence of apoptosis in porcine embryos. Zygote 13:17–21

    Article  CAS  PubMed  Google Scholar 

  • Jones KT, Whittingham DG (1996) A comparison of sperm- and IP3-induced Ca2+ release in activated and aging mouse oocytes. Dev Biol 178:229–237

    Article  CAS  PubMed  Google Scholar 

  • Küpker W, Diedrich K, Edwards RG (1998) Principles of mammalian fertilization. Hum Reprod 13:20–32

    Article  PubMed  Google Scholar 

  • Kang YK et al (2001) Typical demethylation events in cloned pig embryos. Clues on species-specific differences in epigenetic reprogramming of a cloned donor genome. J Biol Chem 276:39980–39984

    Article  CAS  PubMed  Google Scholar 

  • Karja NW, Otoi T, Murakami M, Wongsrikeao P, Budivanto A, Fahrudin M et al (2005) Effect of cycloheximide on in vitro development of electrically activated feline oocytes. J Reprod Dev 51:783–786

    Article  PubMed  Google Scholar 

  • Kaufman MH (1983) Early mammalian development: parthenogenetic studies. Cambridge University Press, Cambridge

    Google Scholar 

  • Kaufman MH, Webb S (1990) Postimplantation development of tetraploid mouse embryos produced by electrofusion. Development 110:1121–1132.

    CAS  PubMed  Google Scholar 

  • Kharche SD, Birade HS (2013) Parthenogenesis and activation of mammalian oocytes for in-vitro embryo production: a review. Adv Biosci Biotechnol 4:170–182

    Article  CAS  Google Scholar 

  • Kharche SD, Goel AK, Jindal SK, Jha BK, Goel P (2013) Assessment of parthenogenetic embryo production by activation of in vitro matured caprine oocytes with different concentrations of ethanol. Small Rumin Res 111:100–103

    Article  Google Scholar 

  • Kharche SD, Goel AK, Jindal SK, Goel P, Kouamo J, Saraswat S (2015) Effect of protein phosphorylation inhibitor on production of parthenogenetic caprine embryos. Indian J Anim Sci 85:139–142

    CAS  Google Scholar 

  • Kim N-H, Simerly C, Funahashi H, Schatten G, Day BN (1996) Microtubule organization in porcine oocytes during fertilization and parthenogenesis. Biol Reprod 54:1397–1404

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Ng K, Rugg-Gunn PJ, Shieh J-H, Kirak O, Jaenisch R, Wakayama T, Moore MA, Pedersen RA, Daley GQ (2007) Recombination signatures distinguish embryonic stem cells derived by parthenogenesis and somatic cell nuclear transfer. Cell Stem Cell 1:346–352

    Article  CAS  PubMed  Google Scholar 

  • King WA, Xu KP, Sirard MA, Greve T, Leclerc P, Lambert RD, Jacques P (1988) Cytogenetic study of parthenogenetically activated bovine oocytes matured in vivo and in vitro. Gamete Res 20:265–274

    Article  CAS  PubMed  Google Scholar 

  • Kishikawa H, Wakayama T, Yanagimachi R (1999) Comparison of oocyte-activating agents for mouse cloning. Cloning 1:153–159

    Article  CAS  PubMed  Google Scholar 

  • Koh CJ, Delo DM, Lee JW, Siddiqui MM, Lanza RP, Soker S, Yoo JJ, Atala A (2009) Parthenogenesis-derived multipotent stem cells adapted for tissue engineering applications. Methods 47:90–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kono T et al (2004) Birth of parthenogenetic mice that can develop to adulthood. Nature 428:860–864

    Article  CAS  PubMed  Google Scholar 

  • Krafka J Jr (1939) Parthenogenetic cleavage in the human ovary. Anat Rec 75:19–21

    Article  Google Scholar 

  • Kubiak J, Paldi A, Weber M, Maro B (1991) Genetically identical parthenogenetic mouse embryos produced by inhibition of the first meiotic cleavage with cytochalasin D. Development 111:763–769

    CAS  PubMed  Google Scholar 

  • Kure-bayashi S, Miyake M, Okada K, Kato S (2000) Successful implantation of in vitro-matured, electro-activated oocytes in the pig. Theriogenology 53:1105–1119

    Article  CAS  PubMed  Google Scholar 

  • Latham KE, Akutsu H, Patel B, Yanagimachi R (2002) Comparison of gene expression during preimplantation development between diploid and haploid mouse embryos. Biol Reprod 67:386–392

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Tian XC, Yang X (2004) Optimization of parthenogenetic activation protocol in porcine. Mol Reprod Dev 68:51–57

    Article  CAS  PubMed  Google Scholar 

  • Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 99(7):4391–4396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JY, Lees-Murdock DJ, Xu GL, Walsh CP (2004) Timing of establishment of paternal methylation imprints in the mouse. Genomics 84:952–960

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Lei J, Wininger D, Nguyen MT, Khanna R, Hartmann C et al (2003) Multilineage potential of homozygous stem cells derived from metaphase II oocytes. Stem Cells 21:152–161

    Article  PubMed  Google Scholar 

  • Lin G, OuYang Q, Zhou X et al (2007) A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure. Cell Res 17(12):999–1007

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Trimarchi JR, Keefe DL (2002) Haploidy but not parthenogenetic activation leads to increased incidence of apoptosis in mouse embryos. Biol Reprod 66:204–210

    Article  CAS  PubMed  Google Scholar 

  • Loi P, Ledda S, Fulka J Jr, Cappai P, Moor RM (1998) Development of parthenogenetic and cloned ovine embryos: effect of activation protocols. Biol Reprod 58(5):1177–1187

    Article  CAS  PubMed  Google Scholar 

  • Lucifero D, Mertineit C, Clarke HJ, Bestor TH, Trasler JM (2002) Methylation dynamics of imprinted genes in mouse germ cells. Genomics 79:530–538

    Article  CAS  PubMed  Google Scholar 

  • Macas E, Rosselli M, Imthurn B, Keller PJ (1993) Chromosomal constitution of mouse blastocysts derived from oocytes inseminated by multiple sperm insertion into the perivitelline space. J Assist Reprod Genet 7:468–475

    Article  Google Scholar 

  • Machaty Z, Funahashi H, Mayes MA, Day BN, Prather RS (1996) Effects of injecting calcium chloride into in vitro-matured porcine oocytes. Biol Reprod 54:316–322

    Article  CAS  PubMed  Google Scholar 

  • Machaty Z, Rickords LF, Prather RS (1999) Parthenogenetic activation of porcine oocytes after nuclear transfer. Cloning 1:101–109

    Article  CAS  PubMed  Google Scholar 

  • Mai Q, Yu Y, Li T et al (2007) Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res 17(12):1008–1019

    Article  CAS  PubMed  Google Scholar 

  • Mann JR, Gadi I, Harbison ML, Abbondanzo SJ, Stewart CL (1990) Androgenetic mouse embryonic stem cells are pluripotent and cause skeletal defects in chimeras: implications for genetic imprinting. Cell 62:251–260

    Article  CAS  PubMed  Google Scholar 

  • Marshall VS, Wilton LJ, Moore HD (1998) Parthenogenetic activation of marmoset (Callithrix jacchus) oocytes and the development of marmoset parthenogenones in vitro and in vivo. Biol Reprod 59:1491–1497

    Article  CAS  PubMed  Google Scholar 

  • Mason MJ, Garcia-Rodriguez C, Grinstein S (1991) Coupling between intracellular Ca2+ stores and Ca2+ permeability of the plasma membrane: comparison of effect of thapsigargin, 2,5-di-(tert-butyl)-1,4- hydroquinone, and cyclopiazonic acid in rat thymic lymphocytes. J Biol Chem 266:20856–20862

    CAS  PubMed  Google Scholar 

  • Max A, Grabiec A, Tischner M (2007) Parthenogenetic activation of domestic cat oocytes using ethanol, calcium ionophore, cycloheximide and a magnetic field. Theriogenology 67:795–800

    Article  PubMed  CAS  Google Scholar 

  • Mayes MA, Stogsdill PL, Prather RS (1995) Parthenogenic activation of pig oocytes by protein kinase inhibition. Biol Reprod 53:270–275

    Article  CAS  PubMed  Google Scholar 

  • Meo SC, Leal CL, Garcia JM (2004) Activation and early parthenogenesis of bovine oocytes treated with ethanol and strontium. Anim Reprod Sci 81:35–46

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi N, Barton SC, Kaneda M, Hajkova P, Surani MA (2006) The continuing quest to comprehend genomic imprinting. Cytogenet. Genome Res 113:6–11

    Article  CAS  Google Scholar 

  • Nandi S, Chauhan MS, Plata P (2000) Effect of a corpus luteum in the recovery and developmental potential of buffalo oocytes. Vet Rec 147:580–581

    Article  CAS  PubMed  Google Scholar 

  • Nussbaum DJ, Prather RS (1995) Differential effects of protein synthesis inhibitors on porcine oocyte activation. Mol Reprod Dev 195:70–75

    Article  Google Scholar 

  • Owen R (1849) On parthenogenesis or the successive production of procreating individuals from a single ovum. John van Voorst, London

    Google Scholar 

  • Ozil JP (1990) The parthenogenetic development of rabbit oocytes after repetitive pulsatile electrical stimulation. Development 109:117–127

    CAS  PubMed  Google Scholar 

  • Paffoni A, Brevini TA, Somigliana E, Restelli L, Gandolfi F, Ragni G (2007) In vitro development of human oocytes after parthenogenetic activation or intracytoplasmic sperm injection. Fertil Steril 87:77–82

    Article  PubMed  Google Scholar 

  • Paffoni A, Brevini TAL, Gandolfi F, Ragni G (2008) Parthenogenetic activation: biology and applications in the ART laboratory. Placenta 29:S121–S125

    Article  Google Scholar 

  • Pathak J, Kharche SD, Goel AK, Jindal SK (2013) A comparative study on parthenogenetic activation and embryo production from in vitro matured caprine oocytes. Small Rumin Res 113:136–140

    Article  Google Scholar 

  • Patrick CD et al (2004) Population models of sperm-dependent parthenogenesis. J Theor Biol 229:559–572

    Article  Google Scholar 

  • Pincus G (1936) The eggs of mammals. Macmillan, New York

    Google Scholar 

  • Pincus G, Shapiro H (1940) Further studies on the parthenogenetic activation of rabbit eggs. Proc Natl Acad Sci U S A 26:163–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratt HP, Ziomek CA, Reeve WJ, Johnson MH (1982) Compaction of the mouse embryo: an analysis of its components. J Embryol Exp Morphol 70:113–132

    CAS  PubMed  Google Scholar 

  • Prichard JF, Thebodeaux JK, Pool SH, Blakewood EG, Menezo Y, Godke RA (1992) In vitro co-culture of early stage caprine embryos with oviductal and uterine epithelial cells. Hum Reprod 7:553

    CAS  PubMed  Google Scholar 

  • Reubinoff BE, Itsykson P, Turetsky T et al (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19(12):1134–1140 (comment)

    Google Scholar 

  • Revazova ES, Turovets NA, Kochetkova OD, Kindarova LB, Kuzmichev LN, Janus JD, Pryzhkova MV (2007) Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9:432–449

    Article  CAS  PubMed  Google Scholar 

  • Ruddock NT, Wilson KJ, Cooney MA, Korfiatis NA, Tecirlioglu RT, French AJ (2004) Analysis of imprinted messenger RNA expression during bovine preimplantation development. Biol Reprod 70:1131–1135

    Article  CAS  PubMed  Google Scholar 

  • Saidel GE, Glass T, Olson SE (1991) Culture of one cell bovine ova to blastocyst in chemically defined media. Biol Reprod 44:88 (Abstr.)

    Google Scholar 

  • Sato K, Yoshida M, Miyoshi K (2005) Utility of ultrasound stimulation for activation of pig oocytes matured in vitro. Mol Reprod Dev 72:396–403

    Article  CAS  PubMed  Google Scholar 

  • Sedmíková M, Burdová J, Petr J, Etrych M, Rozinek J, Jílek F (2003) Induction and activation of meiosis and subsequent parthenogenetic development of growing pig oocytes using calcium ionophore A23187. Theriogenology 60:1609–1620

    Article  PubMed  CAS  Google Scholar 

  • Sengoku K, Takuma N, Miyamato T, Yamauchi T, Ishikawa M (2004) Nuclear dynamics of parthenogenesis of human oocytes: effect of oocyte aging in vitro. Gynecol Obstet Invest 58:155–159

    Article  CAS  PubMed  Google Scholar 

  • Shamusddin M, Larsoon B, Custfson H, Rodriguez Martinez H (1994) A Serum free cell culture system for development of bovine one cell embryos up to blastocyst stage with improved viability. Theriogenology 41:1033–1043

    Article  Google Scholar 

  • Solter D (1988) Differential imprinting and expression of maternal and paternal genomes. Annu Rev Genet 22:127–146

    Article  CAS  PubMed  Google Scholar 

  • Sritanaudomchai H, Pavasuthipaisit K, Kitiyanant Y, Kupradinun P, Mitalipov S, Kusamran T (2007) Characterization and multilineage differentiation of embryonic stem cells derived from a buffalo parthenogenetic embryo. Mol Reprod Dev 74(10):1295–1302

    Article  CAS  PubMed  Google Scholar 

  • Sun FZ, Hoyland J, Huang X, Mason W, Moor RM (1992) A comparison of intracellular changes in porcine eggs after fertilization and electroactivation. Development 115:947–956

    CAS  PubMed  Google Scholar 

  • Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–550

    Article  CAS  PubMed  Google Scholar 

  • Thibault C, Szollosi O, Gerard M (1987) Mammalian oocytes maturation. Reprod Nutr Dev 27:865–896

    Article  CAS  PubMed  Google Scholar 

  • Thorvaldsen JL, Fedoriw AM, Nguyen S, Bartolomei MS (2006) Developmental profile of H19 differentially methylated domain (DMD) deletion alleles reveals multiple roles of the DMD in regulating allelic expression and DNA methylation at the imprinted H19/Igf2 locus. Mol Cell Biol 26:1245–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thouas GA, Korfiatis NA, French AJ, Jones GM, Trounson AO (2001) Simplified technique for differential staining of inner cell mass and Trophectoderm cells of mouse and bovine blastocysts. Reprod Bio Med Online 149:25–29 (web paper)

    Article  Google Scholar 

  • Tosti E, Boni R, Cuomo A (2002) Fertilization and activation currents in bovine oocytes. Reproduction 124:835–846

    Article  CAS  PubMed  Google Scholar 

  • Totey SM, Singh GPG, Taneja M, Pwshe CH, Talwar G (1991) Invitro maturation and fertilization of follicular oocytes from buffalo. Theriogenology 35:284

    Article  Google Scholar 

  • Toyokawa K, Harayama H, Miyake M (2005) Exogenous hyaluronic acid enhances porcine parthenogenetic embryo development in vitro possibly mediated by CD44. Theriogenology 64:378–392

    Article  CAS  PubMed  Google Scholar 

  • Walker SK, Hartwich KM, Seamark FR (1996) The production of usually large offspring following embryo manipulation: concept and challenges. Theriogenology 45:111–120

    Article  Google Scholar 

  • Warnecke PM, Mann JR, Frommer M, Clark SJ (1998) Bisulfite sequencing in preimplantation embryos: DNA methylation profile of the upstream region of the mouse imprinted H19 gene. Genomics 51:182–190

    Article  CAS  PubMed  Google Scholar 

  • Witkowska A (1973) Parthenogenetic development of mouse embryos in vivo. I. Preimplantation development. J Embryol Exp Morphol 30:519–545

    CAS  PubMed  Google Scholar 

  • Wu J, Emery BR, Carrell DT (2001) In vitro growth, maturation, fertilization, and embryonic development of oocytes from porcine preantral follicles. Biol Reprod 64:375–381

    Article  CAS  PubMed  Google Scholar 

  • Yadav EN, Kharche SD, Goel AK, Jindal SK, Sinha NK, Johari DK (2007) Comparative efficacy of different techniques for oocytes recovery from prepubertal goat ovaries. Indian J Anim Sci 77:988–990

    Google Scholar 

  • Yadav P, Kharche SD, Goel AK, Jindal SK, Sharma MC (2009) Effect of hormones, EGF and β-mercaptoethanol on in vitro maturation of caprine oocytes. Reprod Fertil Dev 22:337

    Google Scholar 

  • Yang Y et al (2003) Epigenetic regulation of Igf2/H19 imprinting at CTCF insulator binding sites. J Cell Biochem 90:1038–1055

    Article  CAS  PubMed  Google Scholar 

  • Zae Young R et al (2007) The parthenogenetic activation of canine oocytes with Ca-EDTA by various culture periods and concentrations. Theriogenology 67:698–703

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Dinkar Kharche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kharche, S.D., Jha, B.K. (2016). Parthenogenesis. In: Steinhoff, G. (eds) Regenerative Medicine - from Protocol to Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-27610-6_16

Download citation

Publish with us

Policies and ethics