Skip to main content

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 30 ))

Abstract

Receptors are the most important targets for therapeutic drugs [570]. Therefore, it is important to explore the mechanisms of receptor modulation and drug action in intact in vivo systems. Also, the need for a more mechanism-based approach in pharmacokinetic-dynamic modeling has been increasingly recognized [571, 572]. Hill [573] made the first explicit mathematical model of simulated drug action to account for the time courses and concentration–effect curves obtained when nicotine was used to provoke contraction of the frog rectus abdominis muscle.

The master of the oracle at Delphi does not say anything and does not conceal anything, only hints.

Heraclitus of Ephesus (544–483 BC)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the classical pharmacokinetic-pharmacodynamic literature, the effect-site concentration and the effect-site elimination rate constant are denoted by c E and k E0, respectively. Here, the symbols \(y\left (t\right )\) and k y are used instead.

Bibliography

  1. Seber, G., Wild, C.: Nonlinear Regression Analysis. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1989)

    Book  MATH  Google Scholar 

  2. Black, J.: Receptors as pharmaceutical targets. In: Foreman, J., Johansen, T. (eds.) Textbook of Receptor Pharmacology, 2nd edn., pp. 271–278. CRC, New York (2002)

    Google Scholar 

  3. Gieschke, R., Reigner, B., Steimer, J.: Exploring clinical study design by computer simulation based on pharmacokinetic/pharmacodynamic modelling. Int. J. Clin. Pharmacol. Ther. 55(10), 469–474 (1997)

    Google Scholar 

  4. Derendorf, H., Meibohm, B.: Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm. Res. 16(2), 176–185 (1999)

    Article  Google Scholar 

  5. Hill, A.: The mode of action of nicotine and curari, determined by the form of the contraction curve and the method of temperature coefficients. J. Physiol. 39, 361–373 (1909)

    Article  Google Scholar 

  6. Clark, A.: Applied Pharmacology, 5th edn. Churchill, London (1933)

    Google Scholar 

  7. Clark, A.: General Pharmacology. Handbook of Experimental Pharmacology Series, vol. 4. Springer, Berlin (1937)

    Google Scholar 

  8. Black, J., Leff, P.: Operational models of pharmacological agonism. Proc. R. Soc. Lond. B. Biol. Sci. 220(1219), 141–162 (1983)

    Article  Google Scholar 

  9. Kenakin, T.: Principles: receptor theory in pharmacology. Trends Pharmacol. Sci. 25(4), 186–192 (2004)

    Article  Google Scholar 

  10. Visser, S., Wolters, F., Gubbens-Stibbe, J., Tukker, E., VanDerGraaf, P., Peletier, L., Danhof, M.: Mechanism-based pharmacokinetic/pharmacodynamic modeling of the electroencephalogram effects of GABAA receptor modulators: in vitro-in vivo correlations. J. Pharmacol. Exp. Ther. 304(1), 88–101 (2003)

    Article  Google Scholar 

  11. Levy, G.: Relationship between elimination rate of drugs and rate of decline of their pharmacological effects. J. Pharm. Sci. 53, 342–343 (1964)

    Article  Google Scholar 

  12. Levy, G.: Kinetics of pharmacologic effects. Clin. Pharmacol. Ther. 7, 362–372 (1966)

    Article  Google Scholar 

  13. Wagner, J., Aghajanian, G., Bing, O.: Correlation of performance test scores with ‘tissue concentration’ of lysergic acid diethylamide in human subjects. Clin. Pharmacol. Ther. 9(5), 635–638 (1968)

    Article  Google Scholar 

  14. Segre, G.: Kinetics of interaction between drugs and biological systems. Il Farmaco 23, 907–918 (1968)

    Google Scholar 

  15. Sheiner, L., Stanski, D., Vozeh, S., Miller, R., Ham, J.: Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin. Pharmacol. Ther. 25(3), 358–371 (1979)

    Article  Google Scholar 

  16. Holford, N., Sheiner, L.: Kinetics of pharmacologic response. Pharmacol. Ther. 16, 143–166 (1982)

    Article  Google Scholar 

  17. Racine-Poon, A., Botta, L., Chang, T., Davis, F., Gygax, D., Liou, R., Rohane, P., Staehelin, T., VanSteijn, A., Frank, W.: Efficacy, pharmacodynamics, and pharmacokinetics of CGP 51901, an anti-immunoglobulin E chimeric monoclonal antibody, in patients with seasonal allergic rhinitis. Clin. Pharmacol. Ther. 62(6), 675–690 (1997)

    Article  Google Scholar 

  18. D’Hollander, A., Delcroix, C.: An analytical pharmacodynamic model for nondepolarizing neuromuscular blocking agents. J. Pharmacokinet. Biopharm. 9(1), 27–40 (1981)

    Article  Google Scholar 

  19. Perry, S., Inturrisi, C.: Analgesia and morphine disposition in burn patients. J. Burn Care Rehabil. 4(4), 276–279 (1983)

    Article  Google Scholar 

  20. Scott, J., Cooke, J., Stanski, D.: Electroencephalographic quantitation of opioid effect: comparative pharmacodynamics of fentanyl and sufentanil. Anesthesiology 74(1), 34–42 (1991)

    Article  Google Scholar 

  21. Stanski, D., Hudson, R., Homer, T., Saidman, L., Meathe, E.: Pharmacodynamic modeling of thiopental anesthesia. J. Pharmacokinet. Biopharm. 12(2), 223–240 (1984)

    Article  Google Scholar 

  22. Homer, T., Stanski, D.: The effect of increasing age on thiopental disposition and anesthetic requirement. Anesthesiology 62(6), 714–724 (1985)

    Article  Google Scholar 

  23. Dingemanse, J., Haussler, J., Hering, W., Ihmsen, H., Albrecht, S., Zell, M., Schwilden, H., Schuttler, J.: Pharmacokinetic-pharmacodynamic modelling of the EEG effects of Ro 48-6791, a new short-acting benzodiazepine, in young and elderly subjects. Br. J. Anaesth. 79(5), 567–574 (1997)

    Google Scholar 

  24. Salazar, D., Much, D., Nichola, P., Seibold, J., Shindler, D., Slugg, P.: A pharmacokinetic-pharmacodynamic model of d-sotalol Q-Tc prolongation during intravenous administration to healthy subjects. J. Clin. Pharmacol. 37(9), 799–809 (1997)

    Article  Google Scholar 

  25. Derendorf, H., Hochhaus, G.: Handbook of Pharmacokinetic/Pharmacodynamic Correlation. CRC, Boca Raton (1995)

    Google Scholar 

  26. Iliadis, A., Cano, J.: A new pharmacodynamic modelling approach based on receptors theory. In: Aiache, J., Hirtz, J. (eds.) 3th European Congress of Biopharmaceutics and Pharmacokinetics, vol. 3, pp. 65–74. Imprimerie de l’Universite, Clermont-Ferrand/Freiburg (1987)

    Google Scholar 

  27. Shimada, S., Nakajima, Y., Yamamoto, K., Sawada, Y., Iga, T.: Comparative pharmacodynamics of eight calcium channel blocking agents in Japanese essential hypertensive patients. Biol. Pharm. Bull. 19(3), 430–437 (1996)

    Article  Google Scholar 

  28. Karlsson, M., Molnar, V., Bergh, J., Freijs, A., Larsson, R.: A general model for time-dissociated pharmacokinetic-pharmacodynamic relationships exemplified by paclitaxel myelosuppression. Clin. Pharmacol. Ther. 63, 11–25 (1998)

    Article  Google Scholar 

  29. Dayneka, N., Garg, V., Jusko, W.: Comparison of four basic models of indirect pharmacodynamic response. J. Pharmacokinet. Biopharm. 21(4), 457–478 (1993)

    Article  Google Scholar 

  30. Ariens, E.: Affinity and intrinsic activity in the theory of competitive inhibition. I. Problems and theory. Archives Internationales de Pharmacodynamie et de Therapie 99(1), 32–49 (1954)

    Google Scholar 

  31. Nagashima, R., O’Reilly, R., Levy, G.: Kinetics of pharmacologic effects in man: the anticoagulant action of warfarin. Clin. Pharmacol. Ther. 10, 22–35 (1969)

    Article  Google Scholar 

  32. Jusko, W., Ko, H.: Physiologic indirect response models characterize diverse types of pharmacodynamic effects. Clin. Pharmacol. Ther. 56(4), 406–419 (1994)

    Article  Google Scholar 

  33. Mager, D., Wyska, E., Jusko, W.: Diversity of mechanism-based pharmacodynamic models. Drug Metab. Dispos. 31(5), 510–518 (2003)

    Article  Google Scholar 

  34. Sharma, A., Ebling, W., Jusko, W.: Precursor-dependent indirect pharmacodynamic response model for tolerance and rebound phenomena. J. Pharm. Sci. 87(12), 1577–1584 (1998)

    Article  Google Scholar 

  35. Lew, K., Ludwig, E., Milad, M., Donovan, K., Middleton, E., Ferry, J., Jusko, W.: Gender-based effects on methylprednisolone pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther. 54(4), 402–414 (1993)

    Article  Google Scholar 

  36. Chakraborty, A., Krzyzanski, W., Jusko, W.: Mathematical modeling of circadian cortisol concentrations using indirect response models: comparison of several methods. J. Pharmacokinet. Biopharm. 27(1), 23–43 (1999)

    Article  Google Scholar 

  37. Li, H., Meno-Tetang, G., Chiba, K., Arima, N., Heining, P., Jusko, W.: Pharmacokinetics and cell trafficking dynamics of 2-Amino-2-[2-(4-octylphenyl)ethyl]propane-1,3-diol Hydrochloride (FTY720) in cynomolgus monkeys after single oral and intravenous doses. J. Pharmacol. Exp. Ther. 301(2), 519–526 (2002)

    Article  Google Scholar 

  38. Wakelkamp, M., Alvan, G., Paintaud, G.: The time of maximum effect for model selection in pharmacokinetic-pharmacodynamic analysis applied to frusemide. Br. J. Clin. Pharmacol. 45(1), 63–70 (1998)

    Article  Google Scholar 

  39. Trzeciakowski, J.: Analysis of stimulus-response chains using nonlinear dynamics. J. Pharmacol. Toxicol. Methods 36(2), 103–121 (1996)

    Article  Google Scholar 

  40. Yamamoto, K., Abe, M., Katashima, M., Yamada, Y., Sawada, Y., Iga, T.: Pharmacodynamic analysis of antiplatelet effect of aspirin in the literature. Modeling based on inhibition of cyclooxygenase in the platelet and the vessel wall endothelium. Jpn. J. Hosp. Pharm. 22, 133–141 (1996)

    Google Scholar 

  41. Katashima, M., Yamamoto, K., Tokuma, Y., Hata, T., Sawada, Y., Iga, T.: Pharmacokinetic and pharmacodynamic study of a new nonsteroidal 5 alpha-reductase inhibitor, 4-[3-[3-[Bis(4-isobutylphenyl)methylamino]benzoyl]-1H-indol-1-yl]-butyric acid, in rats. J. Pharmacol. Exp. Ther. 284(3), 914–920 (1998)

    Google Scholar 

  42. Abelo, A., Eriksson, U., Karlsson, M., Larsson, H., Gabrielsson, J.: A turnover model of irreversible inhibition of gastric acid secretion by omeprazole in the dog. J. Pharmacol. Exp. Ther. 295(2), 662–669 (2000)

    Google Scholar 

  43. Mouton, J., Vinks, A., Punt, N.: Pharmacokinetic-pharmacodynamic modeling of activity of ceftazidime during continuous and intermittent infusion. Antimicrob. Agents Chemother. 41(4), 733–738 (1997)

    Google Scholar 

  44. Jusko, W.: Pharmacodynamics of chemotherapeutic effects: dose-time-response relationships for phase-nonspecific agents. J. Pharm. Sci. 60(6), 892–895 (1971)

    Article  Google Scholar 

  45. Zhi, J., Nightingale, C., Quintiliani, R.: Microbial pharmacodynamics of piperacillin in neutropenic mice of systematic infection due to Pseudomonas aeruginosa. J. Pharmacokinet. Biopharm. 16(4), 355–375 (1988)

    Article  Google Scholar 

  46. Meibohm, B., Hochhaus, G., Derendorf, H.: Time dependency of the pharmacologic response to glucocorticoids. Clin. Pharmacol. Ther. 61(2), 155 (PI–71) 1997

    Google Scholar 

  47. Bauer, J., Fung, H.: Pharmacodynamic models of nitroglycerin-induced hemodynamic tolerance in experimental heart failure. Pharm. Res. 11(6), 816–823 (1994)

    Article  Google Scholar 

  48. Kenakin, T.: Pharmacological Analysis of Drug-Receptor Interaction. Lippincott-Raven, New York (1997)

    Google Scholar 

  49. VanDenMeiracker, A., ManIn’tVeld, A., Boomsma, F., Fischberg, D., Molinoff, P., and Schalekamp, M.: Hemodynamic and beta-adrenergic receptor adaptations during long-term beta-adrenoceptor blockade. Studies with acebutolol, atenolol, pindolol, and propranolol in hypertensive patients. Circulation 80(4), 903–914 (1989)

    Google Scholar 

  50. Sheiner, L., Verotta, D.: Further notes on physiologic indirect response models. Clin. Pharmacol. Ther. 58(2), 238–240 (1995)

    Article  Google Scholar 

  51. Tallarida, R.: Further characterization of a control model for ligand-receptor interaction: phase plane geometry, stability, and oscillation. Ann. Biomed. Eng. 18, 671–684 (1990)

    Article  Google Scholar 

  52. Paalzow, L.: Integrated pharmacokinetic-dynamic modeling of drugs acting on the CNS. Drug Metab. Rev. 15, 383–400 (1984)

    Article  Google Scholar 

  53. Perez-Urizar, J., Granados-Soto, V., Flores-Murrieta, F., Castaneda-Hernandez, G.: Pharmacokinetic-pharmacodynamic modeling: why? Arch. Med. Res. 31, 539–545 (2000)

    Article  Google Scholar 

  54. Gabrielsson, J., Weiner, D.: Methodology for pharmacokinetic/pharmacodynamic data analysis. Pharm. Sci. Technol. Today 2(6), 244–252 (1999)

    Article  Google Scholar 

  55. Meibohm, B., Derendorf, H.: Pharmacokinetic/pharmacodynamic studies in drug product development. J. Pharm. Sci. 91(1), 18–31 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Macheras, P., Iliadis, A. (2016). Classical Pharmacodynamics. In: Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics. Interdisciplinary Applied Mathematics, vol 30 . Springer, Cham. https://doi.org/10.1007/978-3-319-27598-7_12

Download citation

Publish with us

Policies and ethics