Skip to main content

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 30 ))

Abstract

The “real world” of compartmental systems has a strong stochastic component, so we will present a stochastic approach to compartmental modeling. In deterministic theory developed in Chapter 8, each compartment is treated as being both homogeneous and a continuum.

Résumons nos conclusions…C’est donc en termes probabilistes que les lois de la dynamique doivent être formulées lorsqu’elles concernent des systèmes chaotiques.

Ilya Prigogine (1917–2003)

1977 Nobel Laureate in Chemistry

La fin des certitudes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The terms “drug molecule” and “particle” will be used in this chapter interchangeably.

Bibliography

  1. Bassingthwaighte, J., Liebovitch, L., West, B.: Fractal Physiology. Methods in Physiology Series. Oxford University Press, New York (1994)

    Book  Google Scholar 

  2. Kopelman, R.: Fractal reaction kinetics. Science 241, 1620–1626 (1988)

    Article  Google Scholar 

  3. Charter, M., Gull, S.: Maximum entropy and its application to the calculation of drug absorption rates. J. Pharmacokinet. Biopharm. 15(6), 645–655 (1987)

    Article  Google Scholar 

  4. Verotta, D.: Two constrained deconvolution methods using spline functions. J. Pharmacokinet. Biopharm. 21(5), 609–636 (1993)

    Article  Google Scholar 

  5. Wise, M.: Negative power functions of time in pharmacokinetics and their implications. J. Pharmacokinet. Biopharm. 13(3), 309–346 (1985)

    Article  Google Scholar 

  6. Weiss, M.: Use of gamma distributed residence times in pharmacokinetics. Eur. J. Clin. Pharmacol. 25, 695–702 (1983)

    Article  Google Scholar 

  7. Weiss, M.: A note on the role of generalized inverse Gaussian distributions of circulatory transit times in pharmacokinetics. J. Math. Biol. 20, 95–102 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Roberts, M., Donaldson, J., Rowland, M.: Models of hepatic elimination: comparison of stochastic models to describe residence time distributions and to predict the influence of drug distribution, enzyme heterogeneity, and systemic recycling on hepatic elimination. J. Pharmacokinet. Biopharm. 16(1), 41–83 (1988)

    Article  Google Scholar 

  9. Wise, M., Osborn, S., Anderson, J., Tomlinson, R.: A stochastic model for turnover of radiocalcium based on the observed power laws. Math. Biosci. 2, 199–224 (1968)

    Article  Google Scholar 

  10. Wise, M.: Interpreting both short- and long-term power laws in physiological clearance curves. Math. Biosci. 20, 327–337 (1974)

    Article  MATH  Google Scholar 

  11. Marcus, A.: Power laws in compartmental analysis. Part I: a unified stochastic model. Math. Biosci. 23, 337–350 (1975)

    MATH  Google Scholar 

  12. Matis, J., Wehrly, T., Generalized stochastic compartmental models with Erlang transit times. J. Pharmacokinet. Biopharm. 18(6), 589–607 (1990)

    Article  Google Scholar 

  13. Matis, J., Wehrly, T.: Stochastic models of compartmental systems. Biometrics 35, 199–220 (1979)

    Article  MATH  Google Scholar 

  14. Matis, J., An introduction to stochastic compartmental models in pharmacokinetics. In: Pecile, A., Rescigno, A. (eds.) Pharmacokinetics-Mathematical and Statistical Approaches in Metabolism and Distribution of Chemicals and Drugs, pp. 113–128. Plenum, New York (1988)

    Google Scholar 

  15. Matis, J., Wehrly, T.: A general approach to non-Markovian compartment models. J. Pharmacokinet. Biopharm. 26(4), 437–456 (1998)

    Article  Google Scholar 

  16. Ljung, L.: System Identification: Theory for the User. PTR Prentice Hall Information and System Sciences Series, 2nd ed. Prentice Hall, Englewood Cliffs (1999)

    Google Scholar 

  17. Matis, J., Wehrly, T., Metzler, C.: On some stochastic formulations and related statistical moments of pharmacokinetic models. J. Pharmacokinet. Biopharm. 11(1), 77–92 (1983)

    Article  Google Scholar 

  18. Jacquez, J.: Compartmental Analysis in Biology and Medicine, 3rd edn. BioMedware, Ann Arbor (1996)

    MATH  Google Scholar 

  19. Matis, J., Hartley, H.: Stochastic compartmental analysis: model and least squares estimation from time series data. Biometrics 27, 77–102 (1971)

    Article  Google Scholar 

  20. Matis, J.: Gamma time-dependency in Blaxter’s compartmental model. Biometrics 28, 597–602 (1972)

    Article  Google Scholar 

  21. Takur, A., Rescigno, A., Schafer, D.: On the stochastic theory of compartments. II. Multi-compartment systems. Bull. Math. Biophys. 35, 263–271 (1973)

    MATH  Google Scholar 

  22. Purdue, P.: Stochastic theory of compartments. Bull. Math. Biol. 36, 305–309 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. Purdue, P.: Stochastic theory of compartments: one and two compartment systems. Bull. Math. Biol. 36, 577–587 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. Epperson, J., Matis, J.: On the distribution of the general irreversible n-compartmental model having time-dependent transition probabilities. Bull. Math. Biol. 41, 737–749 (1979)

    MathSciNet  MATH  Google Scholar 

  25. Chiang, C.: Introduction to Stochastic Processes and Their Applications. Krieger, New York (1980)

    MATH  Google Scholar 

  26. Mehata, K., Selvam, D.: A stochastic model for the n-compartment irreversible system. Bull. Math. Biol. 43(5), 549–561 (1981)

    MathSciNet  MATH  Google Scholar 

  27. Weiss, M.: Theorems on log-convex disposition curves in drug and tracer kinetics. J. Theor. Biol. 116, 355–368 (1985)

    Article  MathSciNet  Google Scholar 

  28. Weiss, M.: Generalizations in linear pharmacokinetics using properties of certain classes of residence time distributions. II. Log-concave concentration-time curves following oral administration. J. Pharmacokinet. Biopharm. 15(1), 57–74 (1987)

    Google Scholar 

  29. Agrafiotis, G.: On the stochastic theory of compartments: a semi-Markov approach for the analysis of the k-compartmental systems. Bull. Math. Biol. 44(6), 809–817 (1982)

    MathSciNet  MATH  Google Scholar 

  30. Schalla, M., Weiss, M.: Pharmacokinetic curve fitting using numerical inverse Laplace transformation. Eur. J. Pharm. Sci. 7, 305–309 (1999)

    Article  Google Scholar 

  31. Cutler, D.: A linear recirculation model for drug disposition. J. Pharmacokinet. Biopharm. 7(1), 101–116 (1979)

    Article  Google Scholar 

  32. Yamaoka, K., Kanba, M., Toyoda, Y., Yano, Y., Nakagawa, T.: Analysis of enterohepatic circulation of ceficime in rat by fast inverse Laplace transform (FILT). J. Pharmacokinet. Biopharm. 18(6), 545–559 (1990)

    Article  Google Scholar 

  33. Gallo, J., Lam, F., Perrier, D.: Area method for the estimation of partition coefficients for physiological pharmacokinetic models. J. Pharmacokinet. Biopharm. 15(3), 271–280 (1987)

    Article  Google Scholar 

  34. Veng-Pedersen, P.: Linear and nonlinear system approaches in pharmacokinetics: how much do they offer. I. General considerations. J. Pharmacokinet. Biopharm. 16(4), 413–472 (1988)

    Article  Google Scholar 

  35. Weiss, M.: Moments of physiological transit time distributions and the time course of drug disposition in the body. J. Math. Biol. 15, 305–318 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pipes, L., Harvill, L.: Applied Mathematics for Engineers and Scientists. Pure and Applied Mathematics, 3rd edn. McGraw Hill, Kogakusha (1970)

    Google Scholar 

  37. Duffy, D.: On the numerical inversion of Laplace transforms: comparison of three new methods on characteristic problems from applications. ACM Trans. Math. Softw. 19(3), 333–359 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  38. Durisova, M., Dedik, L., Balan, M.: Building a structured model of a complex pharmacokinetic system with time delays. Bull. Math. Biol. 57(6), 787–808 (1995)

    Article  MATH  Google Scholar 

  39. Purdue, P.: Stochastic theory of compartments: an open, two-compartment, reversible system with independent Poisson arrivals. Bull. Math. Biol. 37, 269–275 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  40. Neuts, M.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. Johns Hopkins University Press, Baltimore (1981)

    MATH  Google Scholar 

  41. Faddy, M.: Compartmental models with phase-type residence-time distributions. Appl. Stoch. Model Data Anal. 6, 121–127 (1990)

    Article  MathSciNet  Google Scholar 

  42. Faddy, M.: A structured compartmental model for drug kinetics. Biometrics 49(1), 243–248 (1993)

    Article  Google Scholar 

  43. Johnson, M., Taaffe, M.: Matching moments to phase distributions: mixtures of Erlang distributions of common order. Commun. Stat. Stoch. Model. 5, 711–743 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ramaswami, V., Latouche, G.: An experimental evaluation of the matrix-geometric method for the G1/PH/1 queue. Commun. Stat. Stoch. Model. 5, 629–667 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  45. Karalis, V., Claret, L., Iliadis, A., Macheras, P.: Fractal volume of drug distribution: it scales proportionally to body mass. Pharm. Res. 18(7), 1056–1060 (2001)

    Article  Google Scholar 

  46. Matis, J., Wehrly, T.: On the use of residence time moments in the statistical analysis of age-department stochastic compartmental systems. In: Capasso, V., Grosso, E., Paveri-Fontana, S. (eds.) Mathematics in Biology and Medicine, pp. 386–398. Springer, New York (1985)

    Chapter  Google Scholar 

  47. McInnis, B., El-Asfouri, S., Kapadia, S.: On stochastic compartmental modeling. Bull. Math. Biol. 41, 611–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rescigno, A., Matis, J.: On the relevance of stochastic compartmental models to pharmacokinetic systems. Bull. Math. Biol. 43(2), 245–247 (1981)

    Article  MathSciNet  Google Scholar 

  49. Seber, G., Wild, C.: Nonlinear Regression Analysis. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1989)

    Book  MATH  Google Scholar 

  50. Kodell, R., Matis, J.: Estimating the rate constants in a two-compartment stochastic model. Biometrics 32(2), 377–390 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  51. Piotrovskii, V.: Pharmacokinetic stochastic model with Weibull-distributed residence times of drug molecules in the body. Eur. J. Clin. Pharmacol. 32, 515–523 (1987)

    Article  Google Scholar 

  52. Matis, J., Tolley, H.: Compartmental models with multiple sources of stochastic variability: the one compartment, time invariant hazard rate case. Bull. Math. Biol. 41, 491–515 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  53. Matis, J., Tolley, H.: On the stochastic modeling of tracer kinetics. Fed. Proc. 39, 104–109 (1980)

    Google Scholar 

  54. Rao, C.: Linear Statistical Inference and Its Applications. General Probability and Mathematical Statistics, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  55. Matis, J., Wehrly, T., Ellis, W.: Some generalized stochastic compartment models for digesta flow. Biometrics 45, 703–720 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  56. Wing, G.: A Primer on Integral Equations of the First Kind: The Problem of Deconvolution and Unfolding. Society for Industrial and Applied Mathematics, Philadelphia (1991)

    Book  MATH  Google Scholar 

  57. Charter, M., Gull, S.: Maximum entropy and drug absorption. J. Pharmacokinet. Biopharm. 19(5), 497–520 (1991)

    Article  Google Scholar 

  58. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  59. BenAvraham, D., Havlin, S.: Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  60. McQuarrie, D.: Stochastic approach to chemical kinetics. J. Appl. Probab. 4, 413–478 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  61. Gardenas, M., Matis, J.: On the time-dependent reversible stochastic compartmental model. II. A class of n-compartment systems. Bull. Math. Biol. 37, 555–564 (1975)

    MATH  Google Scholar 

  62. Matis, J., Kiffe, T.: Stochastic Population Models. A Compartmental Perspective. Lecture Notes in Statistics, vol. 145. Springer, New York (2000)

    Google Scholar 

  63. Renshaw, E.: Saddlepoint approximations for stochastic processes with truncated cumulant generating functions. J. Math. Appl. Med. Biol. 15, 1–12 (1998)

    Article  MATH  Google Scholar 

  64. Bailey, N.: Elements of Stochastic Processes with Applications to the Natural Sciences. General Applied Probability and Statistics. Wiley, New York (1964)

    MATH  Google Scholar 

  65. Gillespie, D.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  66. Gibson, M., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. 104(9), 1876–1889 (2000)

    Article  Google Scholar 

  67. Gillespie, D.: Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115(4), 1716–1733 (2001)

    Article  Google Scholar 

  68. Stundzia, A., Lumsden, C.: Stochastic simulation of coupled reaction-diffusion processes. J. Comput. Phys. 127(1), 196–207 (1996)

    Article  MATH  Google Scholar 

  69. Oppenheim, I., Shuler, K., Weiss, G.: Stochastic Processes in Chemical Physics: The Master Equation. MIT, Cambridge (1977)

    Google Scholar 

  70. Matheson, I., Walls, D., Gardiner, C.: Stochastic models of first-order nonequilibrium phase transitions in chemical reactions. J. Stat. Phys. 12, 21–34 (1975)

    Article  Google Scholar 

  71. Liebovitch, L., Fischbarg, J., Koniarek, J.: Ion channel kinetics: a model based on fractal scaling rather than multistate Markov processes. Math. Biosci. 84(1), 37–68 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  72. Shooman, M.: Probabilistic Reliability: An Engineering Approach. McGraw-Hill Electrical and Electronic Engineering Series. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  73. Billinton, R., Allan, R.: Reliability Evaluation of Engineering Systems. Concepts and Techniques, 2nd edn. Plenum, New York (1992)

    Google Scholar 

  74. Kalbfleisch, J., Prentice, R.: The Statistical Analysis of Failure Time Data. Wiley Series in Probability and Statistics, 2nd edn. Wiley, Hoboken (2002)

    Google Scholar 

  75. Singer, K.: Application of the theory of stochastic processes to the study of irreproducible chemical reactions and nucleation processes. J. R. Stat. Soc. 15, 92–106 (1953)

    MATH  Google Scholar 

  76. McAdams, H., Arkin, A.: Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. U.S.A. 94, 814–819 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Macheras, P., Iliadis, A. (2016). Stochastic Compartmental Models. In: Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics. Interdisciplinary Applied Mathematics, vol 30 . Springer, Cham. https://doi.org/10.1007/978-3-319-27598-7_11

Download citation

Publish with us

Policies and ethics