Advertisement

The Fractal Dynamics of Early Childhood Play Development and Nonlinear Teaching and Learning

  • Doris Pronin Fromberg
Chapter

Abstract

This chapter discusses the generative role of early childhood play in human development. A complex dynamical systems theory perspective can help to better understand this generative process. The sensitive dependence on initial conditions; the equivalence of different surface manifestations with underlying processes; and dynamic phase transitions become a template for apprehending young children’s play and learning, and their interface with relevantly dynamic systems of educational implementation. Connections are drawn with a dynamic themes curriculum approach.

Keywords

Challenge Dynamical systems theory Dynamic themes Dynamic themes curriculum Executive function Phase transitions Self-organization Self-regulation Sensitive dependence on initial conditions Fractal development 

References

  1. Astington, J. W., & Pelletier, J. (2005). Theory of mind, language, and learning in the early years: Developmental origins of school readiness. In B. D. Horner & C. S. Tamis-LeMonda (Eds.), The development of social cognition and communication (pp. 205–230). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  2. Bateson, G. (1971). The message “This is play.”. In R. E. Herron & B. Sutton-Smith (Eds.), Child’s play (pp. 261–266). New York: Wiley.Google Scholar
  3. Bateson, G. (1976). A theory of play and fantasy. In J. S. Bruner, A. Jolly, & K. Sylva (Eds.), Play—Its role in development and evolution (pp. 119–129). New York: Basic Books.Google Scholar
  4. Bateson, G. (1979). Mind and nature. New York: E.P. Dutton.Google Scholar
  5. Beran, J., Feng, Y., Ghosh, S., & Kulik, R. (2014). Long-memory processes. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  6. Bergen, D., Davis, D. R., & Abbitt, J. T. (2016). Technology play and brain development. New York: Taylor and Francis/Routledge.Google Scholar
  7. Blair, C., & Raver, C. C. (2012). Child development in the context of adversity: Experiential canalization of brain and behavior. American Psychologist, 67(4), 309–318.CrossRefGoogle Scholar
  8. Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief to emerging math and literacy ability in kindergarten. Child Development, 78(2), 647–663.CrossRefGoogle Scholar
  9. Bowman, B. T., Donovan, M. S., & Burns, M. S. (Eds.). (2001). Eager to learn: Educating our preschoolers. Washington, DC: National Academy Press.Google Scholar
  10. Bullard, J. (2010). Creating environments for learning: Birth to age eight. Upper Saddle River, NJ: Merrill/Pearson.Google Scholar
  11. Chudler, E. H. (n.d.). Brain plasticity: What is it? Learning and memory. Retrieved March 30, 2015, from http://www.faculty.washington.edu/chudler.plast.html
  12. Cicurel, R., & Nicolelis, M. N. (2015). The relativistic brain: How it works and why it cannot be simulated by a Turing machine. Authors.Google Scholar
  13. Clements, D. H., & Sarama, J. (2009). Early childhood mathematics educational research: Learning trajectories for young children. New York: Routledge.Google Scholar
  14. Cross, C. G., Woods, R. A., & Schweingruber, H. (Eds.). (2009). Mathematics learning in early childhood: Paths toward excellence and equity. Washington, DC: The National Academies Press/National Research Council.Google Scholar
  15. Damasio, A. (2003). The feeling of what happens: Body and emotion in the making of consciousness. New York: Harvest.Google Scholar
  16. Davis, B., & Sumara, D. (2006). Complexity and education: Inquiries into learning, teaching, and research. New York: Lawrence Erlbaum Associates/Taylor and Francis.Google Scholar
  17. Diamond, A., Barnett, W. S., Thomas, J., & Munro, S. (2007). Preschool program improves cognitive control. Science, 318, 1387–1399. Supplemental online material. Retrieved May 28, 2010, from www.devcogneuro.com/publications/science%20article&20-%20Diamond%20et%20al.pdf
  18. Ellis, M. J. (2015). Play and the origin of species. In D. P. Fromberg & D. Bergen (Eds.), Play from birth to twelve (3rd ed., pp. 443–444). New York: Routledge (Reprinted and originally published in 1988).Google Scholar
  19. Erikson, E. H. (1977). Toys and reason. New York: W.W. Norton.Google Scholar
  20. Fauconnier, G., & Turner, M. (2002). The way we think: Conceptual blending and the mind’s hidden complexities. New York: Basic Books.Google Scholar
  21. Fromberg, D. P. (2002). Play and meaning in early childhood education. Boston, MA: Allyn & Bacon.Google Scholar
  22. Fromberg, D. P. (2012). The all-day kindergarten and pre-k curriculum: A dynamic-themes approach. New York: Taylor and Francis/Routledge.Google Scholar
  23. Fromberg, D. P. (2015). How nonlinear systems inform meaning and early education. In D. P. Fromberg & D. Bergen (Eds.), Play from birth to twelve: Contexts, perspectives, and meaning (pp. 419–434). New York: Taylor and Francis/Routledge (Reprinted and originally published in 2010).Google Scholar
  24. Gardner, H. (2006). Multiple intelligences: New Horizons. New York: Basic Books.Google Scholar
  25. Goleman, D. (1995). Emotional intelligence. New York: Bantam.Google Scholar
  26. Gopnik, A. (2009). The philosophical baby. New York: Farrar, Straus, & Giroux.Google Scholar
  27. Gopnik, A., Meltzoff, A. N., & Kuhl, P. K. (1999). The scientist in the crib: What early learning tells us about the mind. New York: Harper Collins.Google Scholar
  28. Hanline, D. (2008). What is myelin? Neuron glia biology, 4(2), 153–163.CrossRefGoogle Scholar
  29. Hanline, M. F., Milton, M. F., & Phelps, P. C. (2001). A longitudinal study of the predictive relation among construction play and mathematical achievement. Early Childhood Development and Care, 167, 115–125.CrossRefGoogle Scholar
  30. Harris, P. L., & Kavanaugh, R. D. (1993). Young children’s understanding of pretense. Monographs of the Society for Research in Child Development No. 231, 58 (1).Google Scholar
  31. Hirsch, E. S. (1996). The block book. Washington, DC: National Association for the Education of Young Children.Google Scholar
  32. Jadczyk, A. (2014). Quantitative fractals: From Heisenberg’s certainty to Barnsley’s fracticality. Hackensack, NJ: World Scientific.CrossRefGoogle Scholar
  33. Johnson, H. M. (1933). The art of block building. New York: Joshua Day.Google Scholar
  34. Kaku, M. (1997). Visions: Science revolution for the twenty-first century. New York: Basic Books.Google Scholar
  35. Kaku, M. (2008). Physics of the impossible. New York: Doubleday.Google Scholar
  36. Kaku, M. (2014). The future of the mind: The scientific quest to understand, enhance, and empower the mind. New York: Doubleday.Google Scholar
  37. Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior. Cambridge, MA: MIT Press.Google Scholar
  38. Kohonen, T. (1989). Self-organization and associative memory (3rd ed.). New York: Springer-Verlag.CrossRefGoogle Scholar
  39. Kurakin, A. (2011). The self-organizing theory of a universal discovery method: The phenomenon of life. Theoretical Biology and Medical Modelling, 8, 4. Retrieved June 20, 2015. doi:  10.1186/1742-4682-8-4.CrossRefGoogle Scholar
  40. Leslie, A. M. (1996). Pretending and believing: Issues in the theory of ToMM. In J. Mehler & S. Franck (Eds.), COGNITION on cognition (pp. 193–220). Cambridge, MA: MIT Press.Google Scholar
  41. Mandelbrot, B. B. (1983). The fractal geometry of nature. New York: W.H. Freeman.Google Scholar
  42. Marcus, G., & Freeman, J. (Eds.). (2015). The future of the brain. Princeton, NJ: Princeton University Press.Google Scholar
  43. Marks-Tarlow, T. (2008). Psyche’s veil: Psychotherapy, fractals and complexity. New York: Routledge.Google Scholar
  44. Mitchell, M. (2009). Complexity: A guided tour. New York: Oxford University Press.Google Scholar
  45. Mitra, P. P., & Bokil, H. (2008). Observed brain dynamics. New York: Oxford University Press.Google Scholar
  46. Moyer, F., & von Haller Gilmer, B. (1956). Experimental study of children’s preferences and blocks in play. Journal of Genetic Psychology, 89, 3–10.CrossRefGoogle Scholar
  47. NGIDD Consortium. (2010). Neuron-glia interactions in nerve development and disease. Retrieved March 30, 2015, from http://222.ngidd/eu/public//myelinated.html
  48. Payne, L., & Kounios, J. (2009). Coherent oscillatory networks support short-term memory retention. Brain Research, 1247, 126–132.CrossRefGoogle Scholar
  49. Perner, J. (1991). Understanding and the representational mind. Cambridge, MA: MIT Press.Google Scholar
  50. Piaget, J., & Inhelder, B. (1976). The child’s conception of space. (F. J. Langdon, & J. L. Lunzer, Trans.). London: Routledge & Kegan Paul. (Originally published in 1956)Google Scholar
  51. Piaget, J., (1965). The moral judgment of the child. (M. Gabain, Trans.). New York: Free.Google Scholar
  52. Provenzo, E. F., Jr., & Brett, A. (1983). The complete block book. Syracuse: Syracuse University Press. Photos M. Carleback.Google Scholar
  53. Reifel, S. (1984). Children’s developmental landmarks in representation of space. Young Children, 40(1), 61–67.Google Scholar
  54. Richardet, R., Chappelier, J. -C., Telefont, & Hill, S. (2015). Large-scale extraction of brain connectivity from the neuroscientific literature. Retrieved June 15, 2015, from http://bioinformatics.oxfordfournals.org/content/early/2015/02/16
  55. Schwartz, S. L., & Copeland, S. M. (2010). Connecting emergent curriculum and standards in early childhood classrooms: Strengthening content and teaching practice. New York: Teachers College Press.Google Scholar
  56. Shelton, C. D. (2013). Brain plasticity: Rethinking how the brain works. E-book: Author.Google Scholar
  57. Sylwester, R. (2000). A biological brain in a cultural classroom. Thousand Oaks, CA: Corwin.Google Scholar
  58. Tang, G., (2014). Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron, 83(6), 1482.CrossRefGoogle Scholar
  59. Tognoli, E., & Kelso, J. A. S. (2008). Brain coordination dynamics: True and false faces of phase synchrony and metastability. Progress in Neurobiology, 87, 31–40.CrossRefGoogle Scholar
  60. Van Manen, M. (1990). Researching lived experience: Human science for an action sensitive pedagogy. Albany, NY: State University of New York Press.Google Scholar
  61. VanderVen, K. (2015). Protean selves, trading zones, and nonlinear dynamical systems: The role of play in future progress. In D. P. Fromberg & D. Bergen (Eds.), Play from birth to twelve (3rd ed., pp. 409–418). New York: Taylor and Francis/Routledge.Google Scholar
  62. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. In E. M. Cole, V. John-Steiner, S. Scribner, & E. Souberman (Eds.) Cambridge, MA: Harvard University Press. (Originally published in 1934)Google Scholar
  63. Vygotsky, L. S. (1987). The role of play in development. In R. W. Reiber & A. S. Carton (Eds.), The collected works of L.S. Vygotsky (Vol. 2, pp. 92–104) (N. Minick, Trans.). New York: Plenum. (Originally published in 1932)Google Scholar
  64. Vygotsky, L. S. (1990). Imagination and creativity in childhood. Soviet Psychology, 28(1), 84–96.Google Scholar
  65. Wardle, F. (2003). An introduction to early childhood education: A multidimensional approach to child care and learning. Boston, MA: Allyn & Bacon.Google Scholar
  66. Yelland, N., Lee, L., O’Rourke, M., & Harrison, C. (2008). Rethinking learning in early childhood education. Maidenhead: McGraw-Hill/Open University Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Curriculum and TeachingHofstra UniversityHempsteadUSA

Personalised recommendations