The Fractal Dynamics of Early Childhood Play Development and Nonlinear Teaching and Learning

  • Doris Pronin Fromberg


This chapter discusses the generative role of early childhood play in human development. A complex dynamical systems theory perspective can help to better understand this generative process. The sensitive dependence on initial conditions; the equivalence of different surface manifestations with underlying processes; and dynamic phase transitions become a template for apprehending young children’s play and learning, and their interface with relevantly dynamic systems of educational implementation. Connections are drawn with a dynamic themes curriculum approach.


Challenge Dynamical systems theory Dynamic themes Dynamic themes curriculum Executive function Phase transitions Self-organization Self-regulation Sensitive dependence on initial conditions Fractal development 


  1. Astington, J. W., & Pelletier, J. (2005). Theory of mind, language, and learning in the early years: Developmental origins of school readiness. In B. D. Horner & C. S. Tamis-LeMonda (Eds.), The development of social cognition and communication (pp. 205–230). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  2. Bateson, G. (1971). The message “This is play.”. In R. E. Herron & B. Sutton-Smith (Eds.), Child’s play (pp. 261–266). New York: Wiley.Google Scholar
  3. Bateson, G. (1976). A theory of play and fantasy. In J. S. Bruner, A. Jolly, & K. Sylva (Eds.), Play—Its role in development and evolution (pp. 119–129). New York: Basic Books.Google Scholar
  4. Bateson, G. (1979). Mind and nature. New York: E.P. Dutton.Google Scholar
  5. Beran, J., Feng, Y., Ghosh, S., & Kulik, R. (2014). Long-memory processes. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  6. Bergen, D., Davis, D. R., & Abbitt, J. T. (2016). Technology play and brain development. New York: Taylor and Francis/Routledge.Google Scholar
  7. Blair, C., & Raver, C. C. (2012). Child development in the context of adversity: Experiential canalization of brain and behavior. American Psychologist, 67(4), 309–318.CrossRefGoogle Scholar
  8. Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief to emerging math and literacy ability in kindergarten. Child Development, 78(2), 647–663.CrossRefGoogle Scholar
  9. Bowman, B. T., Donovan, M. S., & Burns, M. S. (Eds.). (2001). Eager to learn: Educating our preschoolers. Washington, DC: National Academy Press.Google Scholar
  10. Bullard, J. (2010). Creating environments for learning: Birth to age eight. Upper Saddle River, NJ: Merrill/Pearson.Google Scholar
  11. Chudler, E. H. (n.d.). Brain plasticity: What is it? Learning and memory. Retrieved March 30, 2015, from
  12. Cicurel, R., & Nicolelis, M. N. (2015). The relativistic brain: How it works and why it cannot be simulated by a Turing machine. Authors.Google Scholar
  13. Clements, D. H., & Sarama, J. (2009). Early childhood mathematics educational research: Learning trajectories for young children. New York: Routledge.Google Scholar
  14. Cross, C. G., Woods, R. A., & Schweingruber, H. (Eds.). (2009). Mathematics learning in early childhood: Paths toward excellence and equity. Washington, DC: The National Academies Press/National Research Council.Google Scholar
  15. Damasio, A. (2003). The feeling of what happens: Body and emotion in the making of consciousness. New York: Harvest.Google Scholar
  16. Davis, B., & Sumara, D. (2006). Complexity and education: Inquiries into learning, teaching, and research. New York: Lawrence Erlbaum Associates/Taylor and Francis.Google Scholar
  17. Diamond, A., Barnett, W. S., Thomas, J., & Munro, S. (2007). Preschool program improves cognitive control. Science, 318, 1387–1399. Supplemental online material. Retrieved May 28, 2010, from
  18. Ellis, M. J. (2015). Play and the origin of species. In D. P. Fromberg & D. Bergen (Eds.), Play from birth to twelve (3rd ed., pp. 443–444). New York: Routledge (Reprinted and originally published in 1988).Google Scholar
  19. Erikson, E. H. (1977). Toys and reason. New York: W.W. Norton.Google Scholar
  20. Fauconnier, G., & Turner, M. (2002). The way we think: Conceptual blending and the mind’s hidden complexities. New York: Basic Books.Google Scholar
  21. Fromberg, D. P. (2002). Play and meaning in early childhood education. Boston, MA: Allyn & Bacon.Google Scholar
  22. Fromberg, D. P. (2012). The all-day kindergarten and pre-k curriculum: A dynamic-themes approach. New York: Taylor and Francis/Routledge.Google Scholar
  23. Fromberg, D. P. (2015). How nonlinear systems inform meaning and early education. In D. P. Fromberg & D. Bergen (Eds.), Play from birth to twelve: Contexts, perspectives, and meaning (pp. 419–434). New York: Taylor and Francis/Routledge (Reprinted and originally published in 2010).Google Scholar
  24. Gardner, H. (2006). Multiple intelligences: New Horizons. New York: Basic Books.Google Scholar
  25. Goleman, D. (1995). Emotional intelligence. New York: Bantam.Google Scholar
  26. Gopnik, A. (2009). The philosophical baby. New York: Farrar, Straus, & Giroux.Google Scholar
  27. Gopnik, A., Meltzoff, A. N., & Kuhl, P. K. (1999). The scientist in the crib: What early learning tells us about the mind. New York: Harper Collins.Google Scholar
  28. Hanline, D. (2008). What is myelin? Neuron glia biology, 4(2), 153–163.CrossRefGoogle Scholar
  29. Hanline, M. F., Milton, M. F., & Phelps, P. C. (2001). A longitudinal study of the predictive relation among construction play and mathematical achievement. Early Childhood Development and Care, 167, 115–125.CrossRefGoogle Scholar
  30. Harris, P. L., & Kavanaugh, R. D. (1993). Young children’s understanding of pretense. Monographs of the Society for Research in Child Development No. 231, 58 (1).Google Scholar
  31. Hirsch, E. S. (1996). The block book. Washington, DC: National Association for the Education of Young Children.Google Scholar
  32. Jadczyk, A. (2014). Quantitative fractals: From Heisenberg’s certainty to Barnsley’s fracticality. Hackensack, NJ: World Scientific.CrossRefGoogle Scholar
  33. Johnson, H. M. (1933). The art of block building. New York: Joshua Day.Google Scholar
  34. Kaku, M. (1997). Visions: Science revolution for the twenty-first century. New York: Basic Books.Google Scholar
  35. Kaku, M. (2008). Physics of the impossible. New York: Doubleday.Google Scholar
  36. Kaku, M. (2014). The future of the mind: The scientific quest to understand, enhance, and empower the mind. New York: Doubleday.Google Scholar
  37. Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior. Cambridge, MA: MIT Press.Google Scholar
  38. Kohonen, T. (1989). Self-organization and associative memory (3rd ed.). New York: Springer-Verlag.CrossRefGoogle Scholar
  39. Kurakin, A. (2011). The self-organizing theory of a universal discovery method: The phenomenon of life. Theoretical Biology and Medical Modelling, 8, 4. Retrieved June 20, 2015. doi:  10.1186/1742-4682-8-4.CrossRefGoogle Scholar
  40. Leslie, A. M. (1996). Pretending and believing: Issues in the theory of ToMM. In J. Mehler & S. Franck (Eds.), COGNITION on cognition (pp. 193–220). Cambridge, MA: MIT Press.Google Scholar
  41. Mandelbrot, B. B. (1983). The fractal geometry of nature. New York: W.H. Freeman.Google Scholar
  42. Marcus, G., & Freeman, J. (Eds.). (2015). The future of the brain. Princeton, NJ: Princeton University Press.Google Scholar
  43. Marks-Tarlow, T. (2008). Psyche’s veil: Psychotherapy, fractals and complexity. New York: Routledge.Google Scholar
  44. Mitchell, M. (2009). Complexity: A guided tour. New York: Oxford University Press.Google Scholar
  45. Mitra, P. P., & Bokil, H. (2008). Observed brain dynamics. New York: Oxford University Press.Google Scholar
  46. Moyer, F., & von Haller Gilmer, B. (1956). Experimental study of children’s preferences and blocks in play. Journal of Genetic Psychology, 89, 3–10.CrossRefGoogle Scholar
  47. NGIDD Consortium. (2010). Neuron-glia interactions in nerve development and disease. Retrieved March 30, 2015, from http://222.ngidd/eu/public//myelinated.html
  48. Payne, L., & Kounios, J. (2009). Coherent oscillatory networks support short-term memory retention. Brain Research, 1247, 126–132.CrossRefGoogle Scholar
  49. Perner, J. (1991). Understanding and the representational mind. Cambridge, MA: MIT Press.Google Scholar
  50. Piaget, J., & Inhelder, B. (1976). The child’s conception of space. (F. J. Langdon, & J. L. Lunzer, Trans.). London: Routledge & Kegan Paul. (Originally published in 1956)Google Scholar
  51. Piaget, J., (1965). The moral judgment of the child. (M. Gabain, Trans.). New York: Free.Google Scholar
  52. Provenzo, E. F., Jr., & Brett, A. (1983). The complete block book. Syracuse: Syracuse University Press. Photos M. Carleback.Google Scholar
  53. Reifel, S. (1984). Children’s developmental landmarks in representation of space. Young Children, 40(1), 61–67.Google Scholar
  54. Richardet, R., Chappelier, J. -C., Telefont, & Hill, S. (2015). Large-scale extraction of brain connectivity from the neuroscientific literature. Retrieved June 15, 2015, from
  55. Schwartz, S. L., & Copeland, S. M. (2010). Connecting emergent curriculum and standards in early childhood classrooms: Strengthening content and teaching practice. New York: Teachers College Press.Google Scholar
  56. Shelton, C. D. (2013). Brain plasticity: Rethinking how the brain works. E-book: Author.Google Scholar
  57. Sylwester, R. (2000). A biological brain in a cultural classroom. Thousand Oaks, CA: Corwin.Google Scholar
  58. Tang, G., (2014). Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron, 83(6), 1482.CrossRefGoogle Scholar
  59. Tognoli, E., & Kelso, J. A. S. (2008). Brain coordination dynamics: True and false faces of phase synchrony and metastability. Progress in Neurobiology, 87, 31–40.CrossRefGoogle Scholar
  60. Van Manen, M. (1990). Researching lived experience: Human science for an action sensitive pedagogy. Albany, NY: State University of New York Press.Google Scholar
  61. VanderVen, K. (2015). Protean selves, trading zones, and nonlinear dynamical systems: The role of play in future progress. In D. P. Fromberg & D. Bergen (Eds.), Play from birth to twelve (3rd ed., pp. 409–418). New York: Taylor and Francis/Routledge.Google Scholar
  62. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. In E. M. Cole, V. John-Steiner, S. Scribner, & E. Souberman (Eds.) Cambridge, MA: Harvard University Press. (Originally published in 1934)Google Scholar
  63. Vygotsky, L. S. (1987). The role of play in development. In R. W. Reiber & A. S. Carton (Eds.), The collected works of L.S. Vygotsky (Vol. 2, pp. 92–104) (N. Minick, Trans.). New York: Plenum. (Originally published in 1932)Google Scholar
  64. Vygotsky, L. S. (1990). Imagination and creativity in childhood. Soviet Psychology, 28(1), 84–96.Google Scholar
  65. Wardle, F. (2003). An introduction to early childhood education: A multidimensional approach to child care and learning. Boston, MA: Allyn & Bacon.Google Scholar
  66. Yelland, N., Lee, L., O’Rourke, M., & Harrison, C. (2008). Rethinking learning in early childhood education. Maidenhead: McGraw-Hill/Open University Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Curriculum and TeachingHofstra UniversityHempsteadUSA

Personalised recommendations