Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 50))

  • 1237 Accesses

Abstract

In an ad hoc cognitive radio network, energy management is of paramount importance, as it directly determines the lifetime of the cognitive radio as well as the interferences to the licensed users for which the regulatory obligations of cognitive radios must be fulfilled. When the transmission power is fixed, this boils down to the management of the cognitive radio operation time consisting of a dedicated sensing period and a transmission period. In this chapter, different energy saving techniques that use non-coherent sensing, decision-feedback sensing, or censored sensing to reduce the amount of total energy consumption incurred by sensing will be investigated. We will also look into energy optimization techniques that minimize the energy use by taking the physical layer sensing and upper layer throughput into account. Extensive analysis and simulation will be provided to obtain useful guidance on energy management in ad hoc cognitive radio networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haykin, S.: Cognitive radio: brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 23, 201–220 (2005)

    Article  Google Scholar 

  2. Cordeiro, C., Challapali, K., Birru, D., Shankar, S.: IEEE 802.22: an introduction to the first wireless standard based on cognitive radios. J. Commun. 1, 38–47 (2006)

    Article  Google Scholar 

  3. Chen, Y., Tang, L., Long, M.: Analysis of collaborative spectrum sensing without dedicated sensing period. IET Commun. 7, 1617–1627 (2013)

    Article  Google Scholar 

  4. Stüber, G.L.: Principles of Mobile Communication, 2nd edn. Kluwer Academic, Norwell (2001)

    MATH  Google Scholar 

  5. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. Dover, New York (1972)

    MATH  Google Scholar 

  6. Stotas S., Nallanathan A.: Overcoming the sensing-throughput tradeoff in cognitive radio networks. In: IIEEE International Conference on Communications (ICC’10). Cape Town, South Africa (2010)

    Google Scholar 

  7. Ma, J., Zhou, X., Li, G.Y.: Probability-based periodic spectrum sensing during secondary communication. IEEE Trans. Commun. 58, 1291–1301 (2010)

    Article  Google Scholar 

  8. Ghasemi, A., Sousa, E.S.: Optimization of spectrum sensing for opportunistic spectrum access in cognitive radio networks. In: IEEE 4th Consumer Communications and Networking Conference (CCNC 2007), pp. 1022–1026. Las Vegas. USA (2007)

    Google Scholar 

  9. Tang, L., Chen, Y., Nallanathan, A., Hines, E.L.: Performance evaluation of spectrum sensing using recovered secondary frames with decoding errors. IEEE Trans. Wirel. Commun. 11, 2934–2945 (2012)

    Google Scholar 

  10. Jeong, S.S., Jeong, D.G., Jeon, W.S.: Nonquiet primary user detection for OFDMA-based cognitive radio systems. IEEE Trans. Wirel. Commun. 8, 5112–5123 (2009)

    Article  Google Scholar 

  11. Chen, D., Li, J., Ma, J.: In-band sensing without quiet period in cognitive radio. In: Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC ’08), pp. 723–728. Las Vegas, Nev, USA (2008)

    Google Scholar 

  12. Jeong D.G., Jeong S.S., Jeon W.S.: Channel sensing without quiet period for cognitive radio systems: a pilot cancellation approach. EURASIP Journal on Wireless Communications and Networking, (2011)

    Google Scholar 

  13. Sun, C., Zhang, W., Letaief, K.B.: Cooperative spectrum sensing for cognitive radios under bandwidth constraints. In: Proceedings of the WCNC, pp. 1–5. Hong Kong. China (2007)

    Google Scholar 

  14. Wang, W., Zou, W., Zhou, Z., Zhang, H., Ye, Y.: Decision fusion of cooperative spectrum sensing for cognitive radio under bandwidth constraints. In: Proceedings of the ICCIT’08, pp. 733–736 (2008)

    Google Scholar 

  15. Lundén, J., Koivunen, V., Juttunen, A., Poor, H.V.: Censoring for collaborative spectrum sensing in cognitive radios. In: Proceedings of the Asilomar Conference on Signals, Systems and Computers, pp. 772–776 (2007)

    Google Scholar 

  16. Lundén, J., Koivunen, V., Huttunen, A., Poor, H.V.: Collaborative cyclostationary spectrum sensing for cognitive radio systems. IEEE Trans. Signal Process. 57, 4182–4195 (2009)

    Article  MathSciNet  Google Scholar 

  17. Chen, Y.: Analytical performance of collaborative spectrum sensing using censored energy detection. IEEE Trans. Wirel. Commun. 9, 3856–3865 (2012)

    Article  Google Scholar 

  18. Visotsky, E., Kuffner, S., Peterson, R.: On collaborative detection of TV transmissions in support of dynamic spectrum sharing. In: Proceedings of the IEEE DySPAN 2005, pp. 338–345. Baltimore, USA (2005)

    Google Scholar 

  19. Bianchi G.: Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Select. Areas Commun. 18, 535–547 (2000)

    Google Scholar 

  20. Chen, Y.: Optimum number of secondary users in collaborative spectrum sensing considering resources usage efficiency. IEEE Commun. Lett. 12, 877–879 (2008)

    Article  Google Scholar 

  21. Shellhammer S.: Spectrum sensing in IEEE 802.22. In: Proceedings First Workshop on Cognitive Information Processing (CIP 2008), Santorini, Greece (2008)

    Google Scholar 

  22. Gudmundson, M.: A correlation model for shadow fading in mobile radio. Electron. Lett. 27, 2146–2147 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Liang Tang for providing some of the materials used in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, Y. (2016). Cognitive Radio Energy Saving and Optimization. In: Shakir, M.Z., Imran, M.A., A. Qaraqe, K., Alouini, MS., V. Vasilakos, A. (eds) Energy Management in Wireless Cellular and Ad-hoc Networks. Studies in Systems, Decision and Control, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-27568-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27568-0_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27566-6

  • Online ISBN: 978-3-319-27568-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics