Skip to main content

Fast Multi-Objective Aerodynamic Optimization Using Space-Mapping-Corrected Multi-Fidelity Models and Kriging Interpolation

  • Conference paper
  • First Online:
Simulation-Driven Modeling and Optimization

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 153))

Abstract

The chapter describes a computationally efficient procedure for multi-objective aerodynamic design optimization with multi-fidelity models, corrected using space mapping, and kriging interpolation. The optimization procedure utilizes a multi-objective evolutionary algorithm to generate an initial Pareto front which is subsequently refined iteratively using local enhancements of the kriging-based surrogate model. The refinements are realized with space mapping response correction based on a limited number of high-fidelity training points allocated along the initial Pareto front. The method yields—at a low computational cost—a set of designs representing trade-offs between the conflicting objectives. We demonstrate the approach using examples of airfoil design, one in transonic flow and another one in low-speed flow, in low-dimensional design spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leoviriyakit, K., Kim, S., Jameson, A.: Viscous aerodynamic shape optimization of wings including planform variables. In: 21st Applied Aerodynamics Conference, Orlando, Florida, 23–26 June 2003

    Google Scholar 

  2. Braembussche, R.A.: Numerical optimization for advanced turbomachinery design. In: Thevenin, D., Janiga, G. (eds.) Optimization and Computational Fluid Dynamics, pp. 147–189. Springer, Berlin (2008)

    Chapter  Google Scholar 

  3. Mader, C.A., Martins, J.R.R.A.: Derivatives for time-spectral computational fluid dynamics using an automatic differentiation adjoint. AIAA J. 50(12), 2809–2819 (2012)

    Article  Google Scholar 

  4. Mousavi, A., Nadarajah, S.: Heat transfer optimization of gas turbine blades using an adjoint approach. In: 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, AIAA Paper 2010-9048, Fort Worth, Texas, 13–15 September 2010

    Google Scholar 

  5. Leung, T.M., Zingg, D.W.: Aerodynamic shape optimization of wings using a parallel Newton-Krylov approach. AIAA J. 50(3), 540–550 (2012)

    Article  Google Scholar 

  6. Epstein, B., Peigin, S.: Constrained aerodynamic optimization of three-dimensional wings driven by Navier-Stokes computations. AIAA J. 43(9), 1946–1957 (2005)

    Article  Google Scholar 

  7. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  8. Kim, S., Hosseini, K., Leoviriyakit, K., Jameson, A.: Enhancement of class of adjoint design methods via optimization of parameters. AIAA J. 48(6), 1072–1076 (2010)

    Article  Google Scholar 

  9. Schmidt, S., Gauger, N., Ilic, C., Schulz, V.: Three dimensional large scale aerodynamic shape optimization based on shape calculus. In: 41st AIAA Fluid Dynamics Conference and Exhibit, AIAA Paper 2011-3718, Honolulu, Hawaii, 27–30 June 2011

    Google Scholar 

  10. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidyanathan, R., Tucker, P.K.: Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 41(1), 1–28 (2005)

    Article  Google Scholar 

  11. Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45(1–3), 50–79 (2009)

    Article  Google Scholar 

  12. Koziel, S., Echeverría-Ciaurri, D., Leifsson, L.: Surrogate-based methods. In: Koziel, S., Yang, X.S. (eds.) Computational Optimization, Methods and Algorithms. Studies in Computational Intelligence, pp. 33–60. Springer, Berlin (2011)

    Chapter  Google Scholar 

  13. Alexandrov, N.M., Lewis, R.M., Gumbert, C.R., Green, L.L., Newman, P.A.: Optimization with variable-fidelity models applied to wing design. In: 38th Aerospace Sciences Meeting & Exhibit, Reno, NV, AIAA Paper 2000-0841, January 2000

    Google Scholar 

  14. Robinson, T.D., Eldred, M.S., Willcox, K.E., Haimes, R.: Surrogate-based optimization using multifidelity models with variable parameterization and corrected space mapping. AIAA J. 46(11), 2814–2822 (2008)

    Article  Google Scholar 

  15. Booker, A.J., Dennis Jr., J.E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W.: A rigorous framework for optimization of expensive functions by surrogates. Struct. Optim. 17(1), 1–13 (1999)

    Article  Google Scholar 

  16. Fonseca, C.M.: Multiobjective genetic algorithms with applications to control engineering problems. Ph.D. thesis, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK (1995)

    Google Scholar 

  17. Coello Coello, C.A., Lamont, G.B.: Applications of Multi-Objective Evolutionary Algorithms. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

  18. Epstein, B., Peigin, S.: Robust hybrid approach to multiobjective constrained optimization in aerodynamics. AIAA J. 42(8), 1572–1581 (2004)

    Article  Google Scholar 

  19. Nemec, M., Zingg, D.W., Pulliam, T.H.: Multipoint and multi-objective aerodynamic shape optimization. AIAA J. 42(6), 1057–1065 (2004)

    Article  Google Scholar 

  20. Zerbinati, A., Minelli, A., Ghazlane, I., Desideri, J.-A.: Meta-model-assisted MGDA for multi-objective functional optimization. Comput. Fluids, Elsevier 102(10), 116–130 (2014)

    Article  Google Scholar 

  21. March, A., Willcox, W.: Provably convergent multifidelity optimization algorithm not requiring high-fidelity derivatives. AIAA J. 50(5), 1079–1089 (2012)

    Article  Google Scholar 

  22. March, A., Willcox, W.: Constrained multifidelity optimization using model calibration. Struct. Multidiscip. Optim. 46, 93–109 (2012)

    Article  MATH  Google Scholar 

  23. Koziel, S., Yang, X.S., Zhang, Q.J. (eds.): Simulation-Driven Design Optimization and Modeling for Microwave Engineering. Imperial College Press, London (2013)

    Google Scholar 

  24. Han, Z.-H., Gortz, S., Hain, R.: A variable-fidelity modeling method for aero-loads prediction. Notes Numer. Fluid Mech. Multidiscip. Des. 112, 17–25 (2010)

    Article  Google Scholar 

  25. Han, Z.-H., Gortz, S., Zimmermann, R.: On improving efficiency and accuracy of variable-fidelity surrogate modeling in aero-data for loads context. In: Proceedings of CEAS 2009 European Air and Space Conference, Manchester, UK, 26–29 October 2009, London, UK: Royal Aeronautical Society

    Google Scholar 

  26. Han, Z.-H., Zimmermann, R., Gortz, S.: A new cokriging method for variable-fidelity surrogate modeling of aerodynamic data. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL. AIAA 2010-1225, 4–7 January 2010

    Google Scholar 

  27. Koziel, S., Leifsson, L.: Knowledge-based airfoil shape optimization using space mapping. In: 30th AIAA Applied Aerodynamics Conference, New Orleans, Louisiana, 25–28 June 2012

    Google Scholar 

  28. Koziel, S., Cheng, Q.S., Bandler, J.W.: Space mapping. IEEE Microw. Mag. 9(6), 105–122 (2008)

    Article  Google Scholar 

  29. ICEM CFD, ver. 14.0, ANSYS Inc., Southpointe, 275 Technology Drive, Canonsburg, PA 15317, 2012.

    Google Scholar 

  30. Koziel, S., Leifsson, L.: Surrogate-based aerodynamic shape optimization by variable-resolution models. AIAA J. 51(1), 94–106 (2013)

    Article  Google Scholar 

  31. Leifsson, L., Koziel, S.: Surrogate modeling and optimization using shape-preserving response prediction: a review. Eng. Optim. 1–21 (2015). doi: 10.1080/0305215X.2015.1016509

    Google Scholar 

  32. Koziel, S., Leifsson, L: Adaptive response correction for surrogate-based airfoil shape optimization. In: 30th AIAA Applied Aerodynamics Conference, New Orleans, Louisiana, 25–28 June 2012

    Google Scholar 

  33. Koziel, S., Leifsson, L: Multi-fidelity airfoil optimization with adaptive response prediction. In: 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Indianapolis, Indiana, 17–19 September 2012

    Google Scholar 

  34. Eldred, M.S., Giunta, A.A., Collis, S.S.: Second-order corrections for surrogate-based optimization with model hierarchies. In: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, NY, August 30–September 1 2004

    Google Scholar 

  35. Abbott, I.H., Von Doenhoff, A.E.: Theory of Wing Sections. Dover Publications, New York (1959)

    Google Scholar 

  36. Hosder, S., Schetz, J.A., Mason, W.H., Grossman, B., Haftka, R.T.: Computational-fluid-dynamics-based clean-wing aerodynamic noise model for design. J. Aircr. 47(3), 754–762 (2010)

    Article  Google Scholar 

  37. Menter, F.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    Article  Google Scholar 

  38. Kinsey, D.W., Barth, T.J.: Description of a hyperbolic grid generation procedure for arbitrary two-dimensional bodies, AFWAL TM 84-191-FIMM, 1984

    Google Scholar 

  39. FLUENT, ver. 14.0, ANSYS Inc., Southpointe, 275 Technology Drive, Canonsburg, PA 15317, 2012.

    Google Scholar 

  40. Beachkofski, B., Grandhi, R.: Improved distributed hypercube sampling, AIAA Paper 2002-1274. In: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, CO, 22–25 April 2002

    Google Scholar 

  41. Bandler, J.W., Cheng, Q.S., Dakroury, S., Mohamed, A.S., Bakr, M.H., Madsen, K., Sondergaard, J.: Space mapping: the state of the art. IEEE Trans. Microwave Theory and Tech. 52(1), 337–361 (2004)

    Article  Google Scholar 

  42. Couckuyt, I.: Forward and inverse surrogate modeling of computationally expensive problems. Ph.D. thesis, Faculty of Engineering and Architecture, Ghent University (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leifur Leifsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Leifsson, L., Koziel, S., Tesfahunegn, Y., Bekasiewicz, A. (2016). Fast Multi-Objective Aerodynamic Optimization Using Space-Mapping-Corrected Multi-Fidelity Models and Kriging Interpolation. In: Koziel, S., Leifsson, L., Yang, XS. (eds) Simulation-Driven Modeling and Optimization. Springer Proceedings in Mathematics & Statistics, vol 153. Springer, Cham. https://doi.org/10.1007/978-3-319-27517-8_3

Download citation

Publish with us

Policies and ethics