Skip to main content

Sobol Indices for Dimension Adaptivity in Sparse Grids

  • Conference paper
  • First Online:
Simulation-Driven Modeling and Optimization

Abstract

Propagation of random variables through computer codes of many inputs is primarily limited by computational expense. The use of sparse grids mitigates these costs somewhat; here we show how Sobol indices can be used to perform dimension adaptivity to mitigate them further. The method is compared to conventional adaptation schemes on sparse grids (Gerstner and Griebel, Computing 71(1), 65–87, 2003), and seen to perform comparably, without requiring the expense associated with a look-ahead error estimate. It is demonstrated for an expensive computer model of contaminant flow over a barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Incidentally, a much weaker condition on f than that required by (4).

  2. 2.

    This can be seen by considering what space of polynomials can be reconstructed on the sparse grid, namely \(\phi (x,y) = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}y + a_{4}y^{2}\), which include no interaction (xy) terms.

References

  1. de Baar, J., Dwight, R., Bijl, H.: Improvements to gradient-enhanced Kriging using a Bayesian interpretation. Int. J. Uncertain. Quantif. 4(3), 205–223 (2013)

    Article  Google Scholar 

  2. de Baar, J., Scholcz, T., Dwight, R., Bijl, H.: Exploiting adjoint derivatives in high-dimensional metamodels: can we observe the expected speedup? AIAA J. 53(5), 1391–1395 (2015)

    Article  Google Scholar 

  3. Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caflisch, R.E.: Monte carlo and quasi-monte carlo methods. Acta Numer. 7, 1–49 (1998)

    Article  MathSciNet  Google Scholar 

  5. Denny, M.: Introduction to importance sampling in rare-event simulations. Eur. J. Phys. 22(4), 403 (2001)

    Article  Google Scholar 

  6. Dwight, R., Marques, S., Badcock, K.: Reducing uncertainty in aeroelastic flutter boundaries with experimental data. International Forum on Aeroelasticity and Structural dynamics, IFASD-2011-71 (2011)

    Google Scholar 

  7. Edeling, W., Dwight, R., Cinnella, P.: Improved simplex-stochastic collocation method for higher dimensional uncertainty quantification problems. J. Comput. Phys. (2015)

    Google Scholar 

  8. Ganapathysubramanian, B., Zabaras, N.: Sparse grid collocation schemes for stochastic natural convection problems. J. Comput. Phys. 225, 652–685 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gerstner, T., Griebel, M.: Dimension–adaptive tensor–product quadrature. Computing 71(1), 65–87 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Dover, New York (1991)

    Book  MATH  Google Scholar 

  11. Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008). doi:10.1287/opre.1070.0496

    Article  MathSciNet  MATH  Google Scholar 

  12. Johnson, L.W., Riess, R.D.: Numerical Analysis. Addison-Wesley, Reading (1982)

    MATH  Google Scholar 

  13. Kennedy, M., O’Hagan, A.: Bayesian calibration of computer models (with discussion). J. R. Stat. Soc. B. 63, 425–464 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Loeven, G.: Efficient uncertainty quantification in computational fluid dynamics. Ph.D. Thesis, TU Delft, Department of Aerodynamics (2010)

    Google Scholar 

  16. Lucor, D., Xiu, D., Su, C., Karniadakis, G.: Predictability and uncertainty in CFD. Int. J. Numer. Methods Fluids 43, 483–505 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Matthies, H.G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194(12), 1295–1331 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  19. Najm, H.N.: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Ann. Rev. Fluid Mech. 41, 35–52 (2009)

    Article  MathSciNet  Google Scholar 

  20. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Smith, R.C.: Uncertainty Quantification: Theory, Implementation, and Applications, vol. 12. SIAM, Philadelphia (2013)

    Google Scholar 

  23. Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4, 240–243 (1963)

    Google Scholar 

  24. Sobol, I.M.: On quasi-Monte Carlo integrations. Math. Comput. Simul. 47(2), 103–112 (1998)

    Article  MathSciNet  Google Scholar 

  25. TANG, G., Eldred, M., SWILER, L.P.: Global sensitivity analysis for stochastic collocation expansion. In: CSRI Summer Proceedings 2009, p. 100. Citeseer (2010)

    Google Scholar 

  26. Trefethen, L.N.: Is gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50(1), 67–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wikle, C., Berliner, L.: A Bayesian tutorial for data assimilation. Phys. D 230, 1–16 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Witteveen, J.A., Iaccarino, G.: Simplex stochastic collocation with random sampling and extrapolation for nonhypercube probability spaces. SIAM J. Sci. Comput. 34(2), A814–A838 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Special thanks to Andreas Mack for providing modelling and CFD simulation for the heavy gas release test-case.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Dwight .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dwight, R.P., Desmedt, S.G.L., Omrani, P.S. (2016). Sobol Indices for Dimension Adaptivity in Sparse Grids. In: Koziel, S., Leifsson, L., Yang, XS. (eds) Simulation-Driven Modeling and Optimization. Springer Proceedings in Mathematics & Statistics, vol 153. Springer, Cham. https://doi.org/10.1007/978-3-319-27517-8_15

Download citation

Publish with us

Policies and ethics