Skip to main content

Photobioreactor-Based Energy Sources

Abstract

Microalgae are a potential candidate as a feedstock for biofuels and bioproducts in addition to remediate flue gas streams and wastewater. On an industrial scale, algae are grown in photobioreactors of which there are currently three styles: open, closed, and algal film. Open photobioreactors have the lowest capital cost, but suffer from lower productivity and contamination issues, while closed photobioreactors have high capital cost, but culture conditions are easier to control. Algal film photobioreactors are still in the developing phase, but show promise in reducing downstream processing costs due to their high algal biomass concentration. Algae are used to produce fuel products such as biodiesel, biocrude, ethanol, and biogas as well as producing high-value-added products. There are challenges with growing algae for fuel products associated with the high capital cost and processing costs of algae. To mitigate the high capital costs, building-integrated photobioreactor is a promising solution since the photobioreactor can serve multiple functions such as dissipating heat and removing CO2 from the flue gas stream. In these applications, closed photobioreactors are the most promising since they have a wide range of configurations and culture control.

Keywords

  • Algal Biomass
  • Green Roof
  • Raceway Pond
  • High Capital Cost
  • Tubular Photobioreactors

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-27505-5_16
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-27505-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 16.1
Fig. 16.2
Fig. 16.3
Fig. 16.4
Fig. 16.5
Fig. 16.6

References

  • Algenol website: www.algenol.com. Accessed on 21 May 2015

  • Alabi AO, Tampier M, Bibeau E (2009) Microalgae technologies and processes for biofuels/bioenergy production in British Columbia. Report prepared for the British Columbia Innovation Council.

    Google Scholar 

  • ASTM E2397.05—Standard Practice for Determination of Dead Loads and Live Loads Associated with Green Roof Systems

    Google Scholar 

  • Barowitzka MA (1992) Algal biotechnology products and processes—matching science and economies. J Appl Phycol 4:267–279

    CrossRef  Google Scholar 

  • Benemann JR (2008) Open ponds and closed photobioreactors—comparative economics (Slide presentation). Paper presented at the 5th Annual World Congress on Industrial Biotechnology and Bioprocessing, April 27–30, Chicago, Illinois.

    Google Scholar 

  • Bennion EP, Ginosar DM, Moses J, Agblevor F, Quinn JC (2015) Lifecycle assessment of microalgae to biofuel: comparison of thermochemical processing pathways, Applied Energy, In-press

    Google Scholar 

  • Berlew JS (1953) Algal culture from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, p 357

    Google Scholar 

  • Bitog JP, Lee I-B, Lee C-G, Kim K-S, Hwang H-S, Hong S-W, Seo I-H, Kwon K-S, Mostafa E (2011) Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: a review. Comput Electron Agric 76:131–147

    CrossRef  Google Scholar 

  • Boglas P (2014) Algae textile: a lightweight photobioreactor for urban buildings. Master’s Thesis, University of Waterloo, Waterloo

    Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    CrossRef  Google Scholar 

  • Boussiba S, Sandbank E, Shelef G, Cohen Z, Vonshak A, Ben-Amotz A, Arad S, Richmond A (1988) Outdoor cultivation of the marine microalga Isochrysis galbanna in open reactors. Aquaculture 72:247–253

    CrossRef  Google Scholar 

  • Brown TM, Duan P, Savage PE (2010) Hydrothermal liquefaction and gasification of nannochloropsis sp. Energy Fuels 24:3639–3646

    CrossRef  Google Scholar 

  • Chen PH (1987) Factors influencing methane fermentation of micro-algae. PhD. Thesis, University of California, Berkeley, CA, USA.

    Google Scholar 

  • Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S (2011a) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    CrossRef  Google Scholar 

  • Chen X, Goh QY, Tan W, Hossain I, Chen WN, Lau R (2011b) Lumostatic strategy for microalgae cultivation utilizing image analysis and chlorophyll a content as design parameters. Bioresour Technol 102:6005–6012

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    CrossRef  Google Scholar 

  • Christenson LB, Sims RC (2012) Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol Bioeng 109(7):1674–1684

    CrossRef  Google Scholar 

  • Chui S-Y, Tsai M-T, Kao C-Y, Ong S-C, Lin C-S (2009) The air-lift photobioreactors with flow patterning for high-density cultures of microalgae and carbon dioxide removal. Eng Life Sci 9(3):254–260

    CrossRef  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Google Scholar 

  • Collet P, Helias A, Lardon L, Lardon L, Goy R-A, Steyer J-P (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102:207–214

    CrossRef  Google Scholar 

  • Cook PM (1953) U.S. Patent No. 2,658,310. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Craggs RJ, Adey WH, Jenson KR, St John MS, Green FB, Oswald WJ (1996) Phosphorus removal from wastewater using an algal turf scrubber. Water Sci Technol 33(7):191–198

    CrossRef  Google Scholar 

  • Dallaire V, Lessard P, Vandenberg G, de la Noue J (2007) Effect of algal incorporation on growth, survival and carcass composition of rainbow trout (Oncorhynchus mykiss) fry. Bioresour Technol 98:1433–1439

    CrossRef  Google Scholar 

  • Dauta A, Devaux J, Piquemal F, Bouminch L (1990) Growth rate of four freshwater algae in relation to light and temperature. Hydrobiologia 207:221–226

    CrossRef  Google Scholar 

  • Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531

    CrossRef  Google Scholar 

  • de Vasconcelos Barbosa MJ (2003) Microalgal photobioreactors: scale-up and optimization. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  • Degen J, Uebele A, Retze A, Schmid-Staiger U, Walter T (2001) A novel airlift photobioreactor with baffles for improve light utilization through the flashing light effect. J Biotechnol 92(2):89–94

    CrossRef  Google Scholar 

  • Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manage 52:163–170

    CrossRef  Google Scholar 

  • Deng M-D, Coleman JR (1999) Ethanol Synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65(2):523–528

    Google Scholar 

  • Doucha J, Livansky K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a middle and southern European climate. J Appl Phycol 18(6):811–826

    CrossRef  Google Scholar 

  • Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17(5):403–412

    Google Scholar 

  • Erickson D, Sinton D, Psaltis D (2011) Optofluidics for energy applications. Nat Photonics 5:583–590

    CrossRef  Google Scholar 

  • Finlay JA, Callow ME, Ista LK, Lopez GP, Callow JA (2002) The influence of surface wettability on the adhesion strength of settled spores of the Green Alga Enteromorpha and the Diatom Amphora. Integr Comp Biol 42:1116–1122

    CrossRef  Google Scholar 

  • Flemming H-C, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189(22):7945–7947

    CrossRef  Google Scholar 

  • Formighieri C (2015) Cyanobacteria as a platform for direct photosynthesis-to-fuel conversion. In: Development of microalgae cultivation and biomass harvesting systems for biofuel production, (Chapter 7). Springer International Publishing, Switzerland

    Google Scholar 

  • Fuduka H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92(5):405–416

    Google Scholar 

  • Gao Z, Zhao H, Li Z, Tan X, Lu X (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 5:9857–9865

    CrossRef  Google Scholar 

  • Genin SN, Aitchison JS, Allen DG (2014) Design of algal film photobioreactors: material surface energy effects on algal film productivity, colonization and lipid content. Bioresour Technol 155:136–143

    CrossRef  Google Scholar 

  • Grima EM, Fernandez FGA, Camacho FG, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70:231–247

    CrossRef  Google Scholar 

  • Gross M, Wen Z (2014) Yearlong evaluation of performance and durability of a pilot-scale revolving algal biofilm (RAB) cultivation system. Bioresour Technol 171:50

    Google Scholar 

  • Gross M, Henry W, Michael C, Wen Z (2013) Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. Bioresour Technol 150:195–201

    CrossRef  Google Scholar 

  • Gudin C, Therpenier C (1986) Bioconversion of solar energy into organic chemicals by microalgae. Adv Biotechnol Process 6:73–110

    Google Scholar 

  • Hase R, Oikawa H, Sasao C, Morita M, Watanabe Y (2000) Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai City. J Biosci Bioeng 89:157–163

    CrossRef  Google Scholar 

  • Herman EF, Anderson W (1947) Control of algal growths in hatching ponds and raceways. The Progressive Fish-Culturist 9(4):211–212

    CrossRef  Google Scholar 

  • Hillen LW, Pollard G, Wake LW, White N (1982) Hydrocracking of oils of Botryococcus braunii to transport fuels. Biotechnol Bioeng 24:193–205

    CrossRef  Google Scholar 

  • Hodoki Y (2005) Bacteria biofilm encourages algal immigration onto substrata in lotic systems. Hydrobiologia 539:27–34

    CrossRef  Google Scholar 

  • Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor for outdoor mass cultivation of phototrophs. Biotechnol Bioeng 51:51–60

    CrossRef  Google Scholar 

  • Incropera FP, Thomas JF (1978) A model for solar radiation conversion to algae in a shallow pond. Solar Energy 20(2):157–165

    Google Scholar 

  • International Building Exhibition (IBA) Hamburg (2013) Smart Material House “BIQ” white paper

    Google Scholar 

  • Irving TE (2010) Factors influencing the formation and development of microalgal biofilms. Thesis.

    Google Scholar 

  • Irving TE, Allen DG (2011) Species and material considerations in the formation and development of microalgal biofilms. Appl Microbiol Biotechnol 92:283–294

    CrossRef  Google Scholar 

  • Jimenez C, Cossio BR, Labella D, Xavier Niell F (2003) The feasibility of industrial production of Spirulina (Arthrospira) in southern Spain. Aquaculture 217(1–4):179–190

    CrossRef  Google Scholar 

  • Johnson MB, Wen Z (2010) Development of an attached microalgal growth system for biofuel production. Appl. Microbiol. Biotechnol. 85:525–534

    CrossRef  Google Scholar 

  • Kathrein HR (1960) U.S. Patent No. 2,949,700. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Kok B (1956) Photosynthesis in flashing light. Biochim Biophys Acta 21:245–258

    CrossRef  Google Scholar 

  • Lakaniemi AM, Hulatt CJ, Thomas DN, Puhakka JA (2015) Carbon dioxide utilization in gas-sparge microalgal photobioreactors. Conference paper presented at: Asian biohydrogen, bioproducts symposium. Chongqing, China.

    Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690

    CrossRef  Google Scholar 

  • Lawrence JR, Neu TR, Swerhone GDW (1998) Application of multiple parameter imaging for the quantification of algal, bacterial and exopolymer components of microbial biofilms. J Microbiol Methods 32:253–261

    CrossRef  Google Scholar 

  • Liu BYH, Jordan RC (1960) The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Solar Energy 4(3):1–19

    Google Scholar 

  • Le Borgne F, Lepine O, Pruvost J, Le Gouic B, Legrand J (2014) Symbiotic integration of photobioreactors in a factory building façade for mutual benefit between building and microalgae needs. Presented at the 21st international congress of chemical and process engineering.

    Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70(1):1–15

    CrossRef  Google Scholar 

  • Maor T, Appelbaum J (2011) Solar radiation on horizontal tubular microalgae photobioreactor: direct beam radiation. J Solar Eng 133:024502

    Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Miroalgae for biodiesel production and another appliactions: a review. Renew Sustain Energy Rev 14:217–232

    CrossRef  Google Scholar 

  • Meher LC, Vidya Sagar D, Naik, SN (2006) Technical aspects of biodiesel production by transesterification—a review. Renew Sustain Energy Rev 10(3):248–268

    Google Scholar 

  • Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280

    CrossRef  Google Scholar 

  • Minowa T, Yokoyama S, Kishimoto M, Okakura T (1995) Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74:1735–1738

    CrossRef  Google Scholar 

  • Morendo-Garrido I (2008) Microalgae immobilization: current techniques and uses. Biosource Technol 99:3949–3964

    CrossRef  Google Scholar 

  • Mulbry W, Kondrad S, Pizarro C, Kebede-Westhead E (2008) Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour Technol 99:8137–8142

    CrossRef  Google Scholar 

  • Muller-Feuga A (2000) The role of microalgae in aquaculture: situation and trends. J Appl Phycol 12:527–534

    CrossRef  Google Scholar 

  • Ono E, Cuello JL (2004) Design parameters of solar concentrating systems for CO2-mitigating algal photobioreactors. Energy 29:1651–1657

    Google Scholar 

  • Ozkan A, Berberoglu H (2013) Cell to substratum and cell to cell interactions of microalgae. Colloids Surf B Biointerfaces 112:302–309

    CrossRef  Google Scholar 

  • Ozkan A, Kinney K, Katz L, Berberoglu H (2012) Reduction water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Technol 114:542–548

    CrossRef  Google Scholar 

  • Palmer J, Flint S, Brooks J (2007) Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol 34:577–588

    CrossRef  Google Scholar 

  • Pate R, Kilse G, Wu B (2011) Resource demand implications for US algae biofuels production scale-up. Appl Energy 88(10):3377–3388

    CrossRef  Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177

    CrossRef  Google Scholar 

  • Pushparaj B, Pelosi E, Terdici M, Pinzani E, Materassi R (1997) As integrated culture system for outdoor production of microalgae and cyanobacteria. J Appl Phycol 9(2):113–119

    CrossRef  Google Scholar 

  • Quinn JC, Smith TG, Downes CM, Quinn C (2014) Microalgae to biofuels lifecycle assessment—multiple pathway evaluation. Algal Res 4:116–122

    CrossRef  Google Scholar 

  • Richmond A (2000) Microalgal biotechnology at the turn of the millennium: a personal view. J Appl Phycol 12:441–451

    CrossRef  Google Scholar 

  • Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass production of microalgae outdoors. J Appl Phycol 5:327–332

    CrossRef  Google Scholar 

  • Samson R, LeDuy A (1986) Detailed study of anaerobic digestion of Spirulina maxima algae biomass. Biotechnol Bioeng 28:1014–1023

    CrossRef  Google Scholar 

  • Sathananthan S, Genin SN, Aitchison JS, Allen DG (2013) Micro-structured surfaces for algal biofilm growth. Proc. SPIE 8923, micro/nano materials, devices, and systems, 892350

    Google Scholar 

  • Sawayama S, Minowa T, Yokoyama S (1999) Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass Bioenergy 17:33–39

    CrossRef  Google Scholar 

  • Schnurr PJ, Espie G, Allen DG (2013) Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. Bioresour Technol 136:337–344

    CrossRef  Google Scholar 

  • Schumacher JF, Carman ML, Estes TG, Feinberg AW, Wilson LH, Callow ME, Callow JA, Finlay JA, Brennan AB (2007) Engineered antifouling microtopographies—effect of feature size, geometry, and roughness on settlement of zoospores of the green alga ulva. Biofouling 23:55–62

    CrossRef  Google Scholar 

  • Sekar R, Venugopalan VP, Satpathy KK, Nair KVK, Rao VNR (2004) Laboratory studies on adhesion of microalgae to hard substrates. Hydrobiologia 512:109–116

    CrossRef  Google Scholar 

  • Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorous from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19:417–423

    CrossRef  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    CrossRef  Google Scholar 

  • Spalding MH (2008) Microalgal carbon-dioxide-concentration mechanisms: Chlamydomonas inorganic carbon transporters. J Exp Bot 59:1463–1473

    CrossRef  Google Scholar 

  • Stoll RE, von Linde F (2000) Hydrogen—what are the costs? Hydrocarbon Process 79:42–46

    Google Scholar 

  • Sturm BSM, Lamer SL (2011) An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl Energy 88(10):3499–3506

    CrossRef  Google Scholar 

  • Takeuchi T, Utsunomiya K, Kobayashi K, Owada M, Karube I (1992) Carbon dioxide fixation by a unicellular green algal Oocystis sp. J Biotechnol 25:261–267

    CrossRef  Google Scholar 

  • Toronto municipal code chapter 492: green roofs (adopted as of 2009–05-27) articles: IV, VII

    Google Scholar 

  • Toronto municipal code chapter 849: water and sewage services and utility bill (amended as of 2009-03-31) section; 849-5

    Google Scholar 

  • Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197

    CrossRef  Google Scholar 

  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2:012701–012715

    CrossRef  Google Scholar 

  • Ugwu CU, Ogbonna JC, Tanaka H (2002) Improvement of mass transfer characteristics and productivities of inclined tubular photo bioreactors by installation of internal static mixers. Appl Microbiol Biotechnol 58:600–607

    CrossRef  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    CrossRef  Google Scholar 

  • U.S. Energy Information Administration (EIA) and the U.S. Department of Energy (DOE) (2013) Levelized cost of new generation resources in the annual energy outlook 2014.

    Google Scholar 

  • Van Houtte E, Verbauwhede J (2010) Long-time membrane experience at Torreele’s water re-use facility in Belgium. In: Proceedings of membranes in drinking and industrial water treatment. Trondheim, Norway

    Google Scholar 

  • Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ (2012) Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour Technol 109:178–187

    CrossRef  Google Scholar 

  • Walter J (1958) U.S. Patent No. 2,854,792. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Wang B, Lan CQ, Horsman M (2012) Closed photobioreactors for production of microalgal biomasses. Biotechnol Adv 30:904–912

    CrossRef  Google Scholar 

  • Wolff T, Brinkmann T, Geesthacht H-Z, Kerner M, Hindersin S (2015) CO2 enrichment from a flue gas for the cultivation of algae—a field test. Greenhouse Gases Sci Technol 5:1–8

    CrossRef  Google Scholar 

  • Yen HW, Brune DF (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98:130–134

    CrossRef  Google Scholar 

  • Yoo JJ, Choi SP, Kim JYH, Chang WS, Sim SJ (2013) Development of thin-film photobioreactor and its application to outdoor culture of microalgae. Bioprocess Biosyst Eng 36:729–736

    CrossRef  Google Scholar 

  • Young AM (2011) Zeolite-based algae biofilm rotating photobioreactor for algae and biomass production. Masters Thesis, Utah State University, Logan, UT, USA.

    Google Scholar 

  • Yu J (2014) Bio-based products from solar energy and carbon dioxide. Trends Biotechnol 32(1):5–9

    CrossRef  Google Scholar 

  • Yu J, Chen L (2006) Cost effective recovery and purification of polyhydroxyalkanoates by selecting dissolution of cell mass. Biotechnol Progress 22:547–553

    CrossRef  Google Scholar 

  • Zamalloa C, Boon N, Verstraete W (2013) Decentralized two-stage sewage treatment by chemical–biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor. Bioresour Technol 130:152–160

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Grant Allen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Genin, S.N., Aitchison, J.S., Allen, D.G. (2016). Photobioreactor-Based Energy Sources. In: Pacheco Torgal, F., Buratti, C., Kalaiselvam, S., Granqvist, CG., Ivanov, V. (eds) Nano and Biotech Based Materials for Energy Building Efficiency. Springer, Cham. https://doi.org/10.1007/978-3-319-27505-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27505-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27503-1

  • Online ISBN: 978-3-319-27505-5

  • eBook Packages: EnergyEnergy (R0)