1.
A. Einstein, letter to Hans Muesham, July 9, 1951; Einstein archives 38–408; cited. In: Alice Calaprice (ed.) The Ultimate Quotable Einstein, Princeton, N.J: Princeton University Press (2011).
2.
J. Spence, Anecdotes, Observations, and Characters of Books and Men (1820).
3.
A.A. Martinez, Science Secrets, University of Pittsburgh Press (2011) 274–275.
4.
E.P. Wigner “The unreasonable effectiveness of mathematics in natural sciences”, Communications on Pure and Applied Mathematics
13 (1960) 1–14.
5.
S. Wenmackers and D.E.P. Vanpoucke, “Models and simulations in material science: two cases without error bars”, Statistica Neerlandica
66 (2012) 339–355.
6.
I. Stewart, J. Cohen, and T. Pratchett, The Science of Discworld II: The Globe, Ebury Press (2002).
7.
O. Neurath, “Protokollsätze”, Erkenntnis
3 (1933) 204–214.
8.
S. Dehaene, The Number Sense; How the Mind Creates Mathematics, Oxford University Press (1997).
9.
R. Rugani, G. Vallortigara, K. Priftis, and L. Regolin, “Number-space mapping in the newborn chick resembles humans’ mental number line”, Science
347 (2015) 534–536.
10.
M. Shermer, “Patternicity”, Scientific American
299 (2008) 48.
11.
A. Einstein, “Geometry and experience”, translated by G. B. Jeffery and W. Perrett, in: Sidelights on Relativity, London, Methuen (1922) pp. 27–56.
12.
G.W. Leibniz, “Nova Methodus pro Maximis et Minimis, Itemque Tangentibus, qua nec Fractas nec Irrationalales Quantitates Moratur, et Singular pro illi Calculi Genus”, Acta Eruditorum (1684).
13.
I. Newton, “Introductio ad Quadraturum Curvarum”, chapter. In: Opticks or, a Treatise of the Reflexions, Refractions, Inflexions and Colours of Light. Also Two Treatises of the Species and Magnitude of Curvilinear Figures, London (1704).
14.
G. Berkeley, The Analyst; or a Discourse Addressed to an Infidel Mathematician, printed for J. Tonson in the Strand, London (1734).
15.
A. Robinson, Non-Standard Analysis, North-Holland, Amsterdam (1966).
16.
S. Sanders, “More infinity for a better finitism”, Annals of Pure and Applied Logic
161 (2010) 1525–1540.
17.
S. Albeverio, J.E. Fenstad, R. Høegh-Krohn, and T. Lindstrøm (eds), Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Academic Press, Orlando (1986).
18.
F. Bagarello and S. Valenti, “Nonstandard analysis in classical physics and quantum formal scattering”, International Journal of Theoretical Physics
27 (1988) 557–566.
19.
P.J. Kelemen, “Quantum mechanics, quantum field theory and hyper-quantum mechanics”, chapter. In: Victoria Symposium on Non-Standard Analysis, Lecture Notes in Mathematics, Vol. 369, Springer, Berlin (1974).
20.
L.L. Helms and P.A. Loeb, “Application of nonstandard analysis to spin models”, Journal of Mathematical Analysis and Applications 69 (1969) 341–352.
21.
C.E. Francis, “Application of nonstandard analysis to relativistic quantum mechanics”, Journal of Physics A 14 (1981) 2539–2251.
22.
R.F. Werner and P.H. Wolff, “Classical mechanics as quantum mechanics with infinitesimal \(\hbar \)”, Physics Letters A
202 (1995) 155–159.
23.
A. Kukla, “Observation”, chapter. In: S. Psillos and M. Curd (eds), The Routledge Companion to Philosophy of Science, Routledge, London (2010) 396–404.
24.
B.C. van Fraassen, The Scientific Image, Oxford University Press (1980).
25.
G. Maxwell, “The ontological status of theoretical entities”, chapter. In: H. Freigl and G. Maxwell (eds), Scientific Explanation, Space, and Time, Minnesota Studies in the Philosophy of Science, Vol. 3, University of Minnesota Press, Mineapolis (1962) 3–15.
26.
I. Douven, In defence of scientific realism, Ph.D. dissertation, University of Leuven (1996).
27.
T.A.F. Kuipers, From Instrumentalism to Constructive Realism, Synthese Library: Studies in Epistemology, Logic, Methodology, and Philosophy of Science, Vol. 287, Kluwer, Dordrecht (2000).
28.
K. Hrbacek, O. Lessman, and R. O’Donovan, “Analysis with ultrasmall numbers”, The American Mathematical Monthly
117 (2010) 801–816.
29.
S. Wenmackers, “Ultralarge lotteries: analyzing the Lottery Paradox using non-standard analysis”, Journal of Applied Logic
11 (2013) 452–467.
30.
S. Wenmackers and L. Horsten, “Fair infinite lotteries”, Synthese 190 (2013) 37–61.
31.
M. Tegmark, “The Mathematical Universe”, Foundations of Physics
38 (2008) 101–150.
32.
M. Séguin, “My God, It’s Full of Clones: Living in a Mathematical Universe”, Chapter 4 in current book.
33.
R. W. Hamming, “The Unreasonable Effectiveness of Mathematics”, The American Mathematical Monthly
87 (1980) 81–90.
34.
I. Grattan-Guinness, “Solving Wigner’s mystery: The reasonable (though perhaps limited) effectiveness of mathematics in the natural sciences”, The Mathematical Intelligencer (2008) 7–17.
35.
D. Abbott, “The Reasonable Ineffectiveness of Mathematics”, Proceedings of the IEEE
101 (2013) 2147–2153.
36.
D. Hand, The Improbability Principle; Why Coincidences, Miracles, and Rare Events Happen Every Day, Scientific American / Farrar, Straus and Giroux (2014).
37.
G. Pólya, Mathematics and Plausible Reasoning, Princeton University Press (1954; 2\(^{nd}\) edition 1968).
38.
H. Putnam, “What is mathematical truth?”, Historia Mathematica
2 (1975) 529–533.
39.
D. Howard, “Einstein and the Development of Twentieth-Century Philosophy of Science”, Chapter 11 in: M. Janssen and C. Lehner (eds), The Cambridge Companion to Einstein, Cambridge University Press (2014) pp. 354–376.
40.
A. Einstein, “Physics and reality”, translated by J. Piccard, The Journal of the Franklin Institute 221 (1936) 3349–382.
41.
J.O. Urmson and G.J. Warnock (eds), J. L. Austin; Philosophical Papers, Oxford University Press (1979) p. 252.
42.
FXQi discussion forum for the current essay, URL:
http://fqxi.org/community/forum/topic/2492 (retrieved Sept. 2015).