N2O Release from Agro-biofuel Production Negates Global Warming Reduction by Replacing Fossil Fuels

  • Paul J. Crutzen
  • A. R. Mosier
  • K. A. Smith
  • W. Winiwarter
Part of the SpringerBriefs on Pioneers in Science and Practice book series (BRIEFSPIONEER, volume 50)


The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O), has been re-examined, using known global atmospheric removal rates and concentration growth of N2O as a proxy for overall emissions. For both the pre-industrial period and in recent times, after taking into account the large-scale changes in synthetic N fertiliser production, we find an overall conversion factor of 3–5 % from newly fixed N to N2O–N. We assume the same factor to be valid for biofuel production systems. It is covered only in part by the default conversion factor for ‘direct’ emissions from agricultural crop lands (1 %) estimated by IPCC (2006), and the default factors for the ‘indirect’ emissions (following volalilization/deposition and leaching/runoff of N: 0.35–0.45 %) cited therein. However, as we show in the paper, when additional emissions included in the IPCC methodology, e.g. those from livestock production, are included, the total may not be inconsistent with that given by our “top-down” method. When the extra N2O emission from biofuel production is calculated in “CO2-equivalent” global warming terms, and compared with the quasi-cooling effect of ‘saving’ emissions of fossil fuel derived CO2, the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn (maize), depending on N fertilizer uptake efficiency by the plants, can contribute as much or more to global warming by N2O emissions than cooling by fossil fuel savings. Crops with less N demand, such as grasses and woody coppice species, have more favourable climate impacts. This analysis only considers the conversion of biomass to biofuel. It does not take into account the use of fossil fuel on the farms and for fertilizer and pesticide production, but it also neglects the production of useful co-products. Both factors partially compensate each other. This needs to be analyzed in a full life cycle assessment.


Fossil Fuel Panicum Virgatum Global Warming Potential Biofuel Production Biological Nitrogen Fixation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adler, P.R.; Del Grosso, S.J.; Parton, W.J., 2007: “Life-Cycle Assessment of Net Greenhouse-Gas Flux for Bioenergy Cropping Systems”, in: Ecological Applications, 17: 675–691.Google Scholar
  2. Balasubramanian, V.; Alves, B.; Aulakh, M.; Bekunda, M.; Cai, Z.; Drinkwater, L.; Mugendi, D.; van Kessel, C.; Oenema O., 2004: “Crop, Environmental, and Management Factors Affecting Nitrogen Use Efficiency”, in: Mosier, A.R.; Syers, J.K.; Freney, J.; SCOPE (Eds.): Agriculture and the Nitrogen Cycle (Washington: Island Press): 65, 19–33.Google Scholar
  3. Biewinga, E.E.; van der Bijl, G., 1996: Sustainability of Energy Crops in Europe, Centre for Agriculture and Environment (CLM) (Utrecht, The Netherlands).Google Scholar
  4. Cassman, K.G.; Dobermann, A.; Walters, D.T., 2002: “Agroecosystems, Nitrogen-Use Efficiency, and Nitrogen Management”, in: Ambio, 31: 132–140.Google Scholar
  5. Christian, D.G.; Poulton, P.R.; Riche, A.B.; Yates, N.E., 2006: “The Recovery over Several Seasons of 15N-labelled Fertilizer Applied to Miscanthus x Giganteus Ranging from 1 to 3 Years Old”, in: Biomass and Bioenergy, 30: 125–133.Google Scholar
  6. Crutzen, P.J., 1970: “The Influence of Nitrogen Oxides on the Atmospheric Ozone Content”, in: Quarterly Journal of the Royal Meteorological Society, 96: 320–325.Google Scholar
  7. de Vries, W.; Reinds, G.J.; Gundersen, P.; Sterba, H., 2006: “The Impact of Nitrogen Deposition on Carbon Sequestration in European Forests and Forest Soils”, in: Global Change Biology, 12: 1151–1173.Google Scholar
  8. Farrell, A.E.; Plevin, R.J.; Turner, B.T.; Jones, A.D.; O’Hare, M.; Kammen, D.M.: “Ethanol Can Contribute to Energy and Environmental Goals”, in: Science, 311: 506–508.Google Scholar
  9. Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; Karl, D.M.; Michaels, A.F.; Porter, J.H.; Townsend, A.R.; Vörösmarty, C.J., 2004: “Nitrogen Cycles: Past, Present, and Future”, in: Biogeochemistry, 70: 153–226.Google Scholar
  10. Galloway, J.N.; Aber, J.D.; Erisman, J.W.; Seitzinger, S.P.; Howarth, R.H.; Cowling, E.B.; Cosby B.J., 2003: “The Nitrogen Cascade”, in: Bioscience, 53: 341–356.Google Scholar
  11. Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.; Tiffany, D., 2006: “Environmental, Economic, and Energetic Costs and Benefits of Biodiesel and Ethanol Biofuels”, in: Proceedings of the National Academy of Sciences, 103: 11206–11210.Google Scholar
  12. Hyvönen, R.; Persson, T.; Andersson, S.; Olsson, B.; Ågren, G.I.; Linder, S., 2007: “Impact of Long-term Nitrogen Addition on Carbon Stocks in Trees and Soils in Northern Europe”, in: Biogeochemistry.Google Scholar
  13. IPCC, 2006: “IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme”, in: Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. (Eds.): Volume 4, Chapter 11, N 2 O Emissions from Managed Soils, and C 2 O Emissions from Lime and Urea Application (Hayama, Japan: IGES).Google Scholar
  14. Isa, D.W.; Hofman, G.; van Cleemput, O., 2005: “Uptake and Balance of Fertilizer Nitrogen Applied to Sugarcane”, in: Field Crops Research, 95: 348–354.Google Scholar
  15. JRC, 2007: Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context (Well-to-Tank Report, Version 2c, Joint Research Centre, Ispra, Italy).Google Scholar
  16. Kaltschmitt, M.; Krewitt, W.; Heinz, A.; Bachmann, T.; Gruber, S.; Kappelmann, K.-H.; Beerbaum, S.; Isermeyer, F.; Seifert, K., 2000: Gesamtwirtschafiliche Bewertung der Energiegewinnung aus Biomasse unter Berücksichtigung externer und makroökonomischer Effekte (Externe Effekte der Biomasse), Final Report (in German), IER (Germany: University of Stuttgart).Google Scholar
  17. Klein Goldewijk, C.G.M., 2001: “Estimating Global Land Use Change over the Past 300 Years: The HYDE Data Base”, in: Global Biogeochemical Cycles, 15: 415–434.Google Scholar
  18. Magnani, F.; Mencuccini, M.; Borghetti, M.; et al., 2007: “The Human Footprint in the Carbon Cycle of Temperate and Boreal Forests”, in: Nature, 447: 848–850.Google Scholar
  19. Mosier, A.; Kroeze, C.; Nevison, C.; Oenema, O.; Seitzinger, S.; van Cleemput, O., 1998: “Closing the Global N2O Budget: Nitrous Oxide Emissions Through the Agricultural Nitrogen Cycle”, in: Nutrient Cycling in Agroecosystems, 52: 225–248.Google Scholar
  20. Prather, M.; Ehhalt, D.; et al., 2001: “Atmospheric Chemistry and Greenhouse Gases”, in: Houghton, J.T.; Ding, Y.; Griggs, D.J.; et al. (Eds.): Climate Change 2001: The Scientific Basis (Cambridge: Cambridge University Press): 239–287.Google Scholar
  21. Rauh, S.; Berenz, S., 2007: “Interactive Comment on N2O Release from Agro-Biofuel Production Negates Global Warming Reduction by Replacing Fossil Fuels”, in: Crutzen, P.J.; et al. (Eds.): Atmospheric Chemistry and Physics Discussions, 7: S4616–4619.Google Scholar
  22. Smeets, E.; Bouwman, A.F.; Stehfest, E., 2007: “Interactive Comment on N2O Release from Agro-biofuel Production Negates Global Warming Reduction by Replacing Fossil Fuels”, in: Crutzen, P.J.; et al. (Eds.): Atmospheric Chemistry and Physics Discussions, 7: S4937–4941.Google Scholar
  23. Tillman, D.; Hill, J.; Lehman, C., 2006: “Carbon-Negative Biofuels from Low-Input High-Diversity Grassland Biomass”, in: Science, 314: 1598–1600.Google Scholar
  24. UK Department for Transport International Resource Costs of Biodiesel and Bioethanol; (26 January 2006).Google Scholar
  25. Velthof, G.L.; Kuikman, P.J., 2004: Beperking van lachgasemissie uit gewasresten, Alterra rapport 114.3 (in Dutch) (Wageningen, The Netherlands).Google Scholar
  26. von Blottnitz, H.; Rabl, A.; Boiadjiev, D.; Taylor, T.; Arnold, S., 2006: “Damage Costs of Nitrogen Fertilizer in Europe and Their Internalization”, in: Journal of Environmental Planning and Management, 49: 413–433.Google Scholar
  27. Wahid, M.B.; Abdullah, S.N.A.; Henson, I.E., 2005: “Oil Palm–Achievements and Potential”, in: Plant Production Science, 8: 288–297.Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Paul J. Crutzen
    • 1
    • 2
    • 3
  • A. R. Mosier
    • 4
  • K. A. Smith
    • 5
  • W. Winiwarter
    • 3
    • 6
  1. 1.Max-Planck-Institut für Chemie (Otto-Hahn-Institute)MainzGermany
  2. 2.Scripps Institution of OceanographyUniversity of CaliforniaLa JollaUSA
  3. 3.International Institute for Applied Systems Analysis (IIASA)LaxenburgAustria
  4. 4.Mount PleasantUSA
  5. 5.School of GeosciencesUniversity of EdinburghEdinburghUK
  6. 6.Austrian Research Centers—ARCViennaAustria

Personalised recommendations