Advertisement

Functional Diversity in Tropical High Elevation Giant Rosettes

  • Fermín RadaEmail author
Chapter
Part of the Tree Physiology book series (TREE, volume 6)

Abstract

Strong daily temperature variations, seasonal soil water availability and high air evaporative demands play an essential role in adaptive responses of tropical high elevation mountain plants. Giant rosettes are a perfect example of successful adaptations to these conditions, representing an important life-form of high elevation tropical mountains in the Andes, Hawaii and Africa, a well-known case of convergent evolution. Adaptive radiation resulted in a substantially large number of giant rosette species in the ‘paramos’, a local name given for tropical alpine Andean vegetation. Plant functional responses: plant water relations, gas exchange characteristics and freezing resistance in giant rosettes are described in order to understand their responses to extreme environmental conditions characteristic of high elevation tropical habitats. Giant rosettes have a large capacitance (water-storage pith) and strong stomatal control to cope with periods of water deficit, resulting in the maintenance of high leaf water potentials on a daily and seasonal basis. Maximum net CO2 assimilation rates are variable among species (3–10 μmol m−2 s−1), all showing photosynthetic decreases from wet to dry seasons. Giant rosettes rely on permanent supercooling of the leaves together with insulating structures protecting stems and apical buds to cope with freezing damage. Even though the general aspect and plant morphology of giant rosettes is similar across all high elevation tropical regions, responses to similar selective pressures resulted in different physiological characteristics in freezing resistance mechanisms, e.g. tolerance versus avoidance, and thermal balance of the rosette. Giant rosette responses under changing global environments are also discussed. The emphasis in the description of physiological and morphological characteristics will be on South American giant rosettes due to the large number of studies and the large number of species occurring in this region.

Keywords

Gas exchange Leaf pubescence Stem capacitance Supercooling Water relations 

Notes

Acknowledgements

Financial support of the author’s research by the Consejo de Desarrollo Científico, Humanístico, Tecnológico y de las Artes (CDCHTA) of the Universidad de Los Andes , the Fondo Nacional de Ciencia, Tecnología e Innovación (FONACIT) and the Inter-American Institute for Global Change Research (IAI) is gratefully acknowledged.

References

  1. Antonelli A (2009) Have giant lobelias evolved several times independently? Life form shits and historical biogeography of the cosmopolitan and highly diverse subfamily Lobelioideae (Campanulaceae). BMC Biol 7:82Google Scholar
  2. Azócar C (2006) Relación entre anatomía foliar, forma de vida y mecanismos de Resistencia a temperaturas congelantes en diferentes especies en el Páramo de Piedras Blancas. Masters Thesis. Universidad de Los Andes, Mérida, VenezuelaGoogle Scholar
  3. Azócar A, Rada F (2006) Ecofisiología de Plantas de Páramo. Publicaciones ICAE, Mérida, Venezuela, 182 ppGoogle Scholar
  4. Azócar A, Rada F, Goldstein G (1988) Freezing tolerance in Draba chionophylla, a ‘miniature’ caulescent rosette species. Oecologia 75:156–160CrossRefGoogle Scholar
  5. Azócar A, Rada F, García-Núñez C (2000) Aspectos ecofisiológicos para la conservación de ecosistemas tropicales contrastantes. Boletín de la Sociedad Mexicana de Botánica 65:89–94Google Scholar
  6. Baruch Z, Smith AP (1979) Morphological and physiological correlates of niche breadth in two species of Espeletia (Compositae), in the Venezuelan Andes. Oecologia 38:71–82CrossRefGoogle Scholar
  7. Bates BC, Kundzewics ZW, Wu S, Palutikof J (2008) Climate change and water. Technical paper of the intergovernmental panel on climate change, IPCC Secretariat, GenevaGoogle Scholar
  8. Beck E (1994) Cold tolerance in tropical alpine plants. In: Rundel PW, Meinzer FC, Smith AP (eds) Tropical alpine environments: plant form and function. Cambridge University Press, Cambridge, pp 77–110CrossRefGoogle Scholar
  9. Beck E, Senser M, Scheibe R, Steiger H, Pongratz P (1982) Frost avoidance and freezing tolerance in afroalpine “giant rosette” plants. Plant Cell Environ 5:215–222Google Scholar
  10. Beck E, Schulze ED, Senser M, Scheibe R (1984) Equilibrium freezing of leaf water and extracellular ice formation in afroalpine “giant rosette” plants. Planta 162:276–282CrossRefPubMedGoogle Scholar
  11. Beniston M (2003) Climatic change in mountain regions: A review of possible impacts. Clim Change 59:5–31CrossRefGoogle Scholar
  12. Berry PE, Beaujon S, Calvo R (1988) Hybridization in the evolution of the frailejones (Espeletia, Asteraceae). Ecotropicos 1:11–24Google Scholar
  13. Burke MJ, Gusta LV, Quamme HA, Weiser CJ, Li PH (1976) Freezing and injury in plants. Annu Rev Plant Physiol 27:507–528CrossRefGoogle Scholar
  14. Bussmann RW (2006) Vegetation zonation and nomenclature of African mountains—an overview. Lyonia 11:41–66Google Scholar
  15. Buytaert W, Vuille M, Dewulf A, Urrutia R, Karmalkar A, Celleri R (2010) Uncertainties in climate change projections and regional downscaling in the tropical Andes: implications for water resources management. Hydrol Earth Syst Sci 14:1247–1258CrossRefGoogle Scholar
  16. Buytaert W, Cuesta-Camacho F, Tobón C (2011) Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob Ecol Biogeogr 20:19–33CrossRefGoogle Scholar
  17. Carlquist S (1974) Island biology. Columbia University Press, New YorkCrossRefGoogle Scholar
  18. Castaño-Uribe C (2002) Colombia alto andina y la significancia ambiental del bioma páramo en el contexto de los Andes tropicales: Una aproximación a los efectos futuros por el cambio climático global (Global climatic tensor). En: C. Castaño-Uribe (ed), Páramos y Ecosistemas Alto Andinos de Colombia en Condición Hotspot & Global Climatic Tensor. IDEAM, pp 24–70Google Scholar
  19. Cavieres L, Rada F, Azócar A, García-Núñez C, Cabrera HM (2000). Gas exchange and low temperature resistance in two tropical high mountain tree species from the Venezuelan Andes. Acta Oecol 21:203–211Google Scholar
  20. Chen IC, Hill JK, Ohlemüller R, Roy DB (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026CrossRefPubMedGoogle Scholar
  21. Chown SL, Hoffmann AA, Kristensen TN, Angilletta MJ Jr, Stenseth NC, Pertoldi C (2010) Adapting to climate change: a perspective from evolutionary physiology. Clim Res 43:3–15CrossRefGoogle Scholar
  22. Cuatrecasas J (1976) A new subtribe in the Heliantheae (Compositae) Espeletiinae. Phytologia 35:43–61CrossRefGoogle Scholar
  23. Cuatrecasas J, Vuilleumier F, Monasterio M (1986) Speciation and radiation of the Espeletiinae in the Andes. In: Vuilleumier F, Monasterio M (eds) High altitude tropical biogeography. Oxford University Press, Oxford, pp 267–303Google Scholar
  24. Cuesta F, Becerra MT (2012) Biodiversidad y cambio climático en los Andes: Importancia del monitoreo y el trabajo regional. Revista virtual REDESMA 6:19–27Google Scholar
  25. Díaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. J Veg Sci 8:463–474CrossRefGoogle Scholar
  26. Dulhoste R (2010) Estrés hídrico y térmico en especies leñosas de la zona de transición selva húmeda-páramo. Doctor’s thesis, Universidad de Los Andes, Mérida, VenezuelaGoogle Scholar
  27. Ehleringer J (1984) Ecology and ecophysiology of leaf pubescence in North American desert plants. In: Rodríguez E, Healey P, Mehta I (eds) Biology and chemistry of plant trichomes. Plenum Press, New York, pp 113–132Google Scholar
  28. Estrada C, Goldstein G, Monasterio M (1991) Leaf dynamics and water relations of Espeletia spicata and E. timotensis, two giant rosettes of the Desert Paramoin the tropical Andes. Acta Oecologica 12:603–616Google Scholar
  29. Estrada C, Monasterio M (1988) Ecología poblacional de una roseta gigante, Espeletia spicata Sch Bip (Compositae) del páramo desértico. Ecotropicos 1:25–39Google Scholar
  30. Garay I (1981) Le peuplement de microarthropodes dans la litière sur pied de Espeletia timotensis et E. lutescens. Revue Ecologie et Biologie du Sol 18:209–219Google Scholar
  31. García-Varela S (2000) Mecanismos de resistencia a temperaturas congelantes en plantas jóvenes de Espeletia spicata y Espeletia timotensis. Undergraduate thesis, Universidad de Los Andes, Mérida, VenezuelaGoogle Scholar
  32. García-Varela S, Rada F (2003) Freezing avoidance mechanisms in juveniles of giant rosette plants of the genus Espeletia. Acta Oecol 24:165–167CrossRefGoogle Scholar
  33. Goldstein G, Meinzer FC (1983) Influence of insulating dead leaves and low temperatures on water balance in an Andean giant rosette plant. Plant Cell Environ 6:649–656Google Scholar
  34. Goldstein G, Meinzer FC, Monasterio M (1984) The role of capacitance in the water balance of Andean giant rosette species. Plant Cell Environ 7:179–186Google Scholar
  35. Goldstein G, Meinzer FC, Monasterio M (1985a) Physiological and mechanical factors in relation to size-dependent mortality in Andean giant rosette species. Acta Oecol Oecol Plant 6:263–275Google Scholar
  36. Goldstein G, Rada F, Azócar A (1985b) Cold hardiness and supercooling along an altitudinal gradient in andean giant rosette species. Oecologia (Berlin) 68:147–152CrossRefGoogle Scholar
  37. Goldstein G, Rada F, Canales MO, Zabala O (1989) Leaf gas exchange of two giant caulescente rosete species. Oecologia Plant 10:359–370Google Scholar
  38. Goldstein G, Drake DR, Melcher P, Giambelluca TW, Heraux J (1996) Photosynthetic gas exchange and temperature-induced damage in seedlings of the tropical alpine species Argyroxiphium sandwicense. Oecologia 106:298–307CrossRefGoogle Scholar
  39. Gosling WD, Bunting MJ (2007) A role for palaeoecology in anticipating future change in mountain regions? Palaeogeogr Palaeoclimatol Palaeoecol 259:1–5CrossRefGoogle Scholar
  40. Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448–448Google Scholar
  41. Grabherr G, Pauli H, Gottfried M (2010) A worldwide observation of effects of climate change on mountain ecosystems. In: Borsdorf A, Grabherr G, Heinrich K, Scott B, Stötter J (eds) Challenges for mountain regions-tackling complexity. Böhlau Verlag, ViennaGoogle Scholar
  42. Guariguata MR, Azócar A (1988) Seed bank dynamics and germination ecology in Espeletia timotensis (Compositae), an Andean giant rosette. Biotropica 20:54–59CrossRefGoogle Scholar
  43. Hedberg O (1964) Features of afroalpine plant ecology. Acta Phytogeographica Suecica 49:1–44Google Scholar
  44. IPCC (2007) Climate change 2007—impacts, adaptation and vulnerability. Cambridge University Press, CambridgeGoogle Scholar
  45. Körner Ch (2003) Alpine plant life, functional plant ecology of high mountain ecosystems. Springer, Berlin, 344 ppGoogle Scholar
  46. Larcher W (1975) Pflanzenokologische Beobachtungen in der paramostufe der Venezolanischen Anden. Anz Math-Naturw Kl Oest Akad Wissensch 112:194–213Google Scholar
  47. Larcher W, Wagner J (1976) Temperaturgrenzen der CO2-aufnahme und temperaturresistenz der blätter von gebirgspflanzen in vegetationsaktiven Zustand. Oecola Plant 11:361–374Google Scholar
  48. Levitt J (1980) Responses of plants to environmental stresses, vol 1. Chilling, freezing and high temperature stresses, 2nd edn. Academic Press, New YorkGoogle Scholar
  49. Lipp CC, Goldstein G, Meinzer FC, Niemezura W (1994) Freezing tolerance and avoidance in high elevation Hawaiian plants. Plant Cell Environ 17:1035–1044CrossRefGoogle Scholar
  50. Luteyn JL (1992) Páramos: why study them? In: Balslev H, Luteyn JL (eds) Páramo, an Andean ecosystem under human influence. Academic Press, pp 1–14Google Scholar
  51. Luteyn JL (1999) Páramos: a checklist of plant diversity, geographical distribution and botanical literature. Memoirs of the New York Botanical Garden, vol 84Google Scholar
  52. Lüttge U, Fetene M, Liebig M, Rascher U, Beck E (2001) Ecophysiology of niche occupation by two giant rosette plants, Lobelia gibberoa Hemsl and Solanecio gigas (Vatke) C. Jeffrey, in an afromontane forest valley. Ann Bot 88:267–278CrossRefGoogle Scholar
  53. Márquez EJ, Rada F, Fariñas MR (2006) Freezing tolerance in grasses along an altitudinal gradient in the Venezuelan Andes. Oecologia 150:393–397CrossRefPubMedGoogle Scholar
  54. Meinzer FC, Goldstein G (1985) Some consequences of leaf pubescence in the Andean giant rosette plant Espeletia timotensis. Ecology 66:512–520CrossRefGoogle Scholar
  55. Meinzer FC, Goldstein G (1986) Adaptations for water and termal balance in Andean giant rosette plants. In: Givnish TH (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 381–411Google Scholar
  56. Meinzer FC, Goldstein G, Rundel PH (1985) Morphological changes along an altitude gradient and their consequences for an Andean giant rosette. Oecologia 65:278–283CrossRefGoogle Scholar
  57. Meinzer FC, Goldstein G, Rada F (1994) Paramo microclimate and leaf termal balance of Andean giant rosette plants. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments: plant form and function. Cambridge University Press, pp 45–59Google Scholar
  58. Melcher PJ, Goldstein G, Meinzer FC, Minyard B, Giambelluca TW, Loope LL (1994) Determinants of termal balance in the Hawaiian giant rosette plant, Argyroxiphium sandwicense. Oecologia 98:412–418CrossRefGoogle Scholar
  59. Monasterio M (1979) El páramo desértico em el altiandino de Venezuela. In: Salgado-Labouriau ML (ed) El Medio Ambiente Páramo. UNESCO-IVIC, Caracas, Venezuela, pp 150–159Google Scholar
  60. Monasterio M (1980) Las formaciones vegetales de los páramos de Venezuela. In: Monasterio M (ed) Estudios Ecologicos en los Páramos Andinos. Universidad de Los Andes, Mérida, Venezuela, pp 93–158Google Scholar
  61. Monasterio M, Sarmiento L (1991) Adaptive radiation of Espeletia in the cold Andean tropics. Trends Ecol Evol 6:387–391CrossRefPubMedGoogle Scholar
  62. Monasterio M, Vuilleumier F (1986) Introduction: high tropical mountain biota of the world. In: Vuilleumier F, Monasterio M (eds) High altitude tropical biogeography. Oxford University Press, Oxford, pp 3–7Google Scholar
  63. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  64. Navarro A (2013) Relaciones hídricas en Ruilopezia atropurpurea (A.C. Sm.) Cuatrec. a diferentes condiciones microambientales en el Páramo de San José, Estado Mérida. Master’s thesis, Universidad de Los Andes, Mérida, VenezuelaGoogle Scholar
  65. Orozco A (1986) Economía hídrica en rosetas juveniles de Espeletia en el páramo desértico. Masters thesis, Universidad de Los Andes, Mérida, VenezuelaGoogle Scholar
  66. Pauli H, Gottfried M, Grabherr G (1996) Effects of climate change on mountain ecosystems—upward shifting of alpine plants. World Resour Rev 8:382–390Google Scholar
  67. Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Fernández Calzado R, Ghosn D, Holte JI, Kanka R, Kazakis G, Kollár J, Larsson P, Moiseev P, Moiseev D, Molau U, Molero Mesa J, Nagy L, Pelino G, Puscas M, Rossi G, Stanisci A, Syverhuset AO, Theurillat JP, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355CrossRefPubMedGoogle Scholar
  68. Pérez FL (1984) Striated soil in an Andean páramo of Venezuela: its origin and orientation. Arct Alp Res 16:277–289CrossRefGoogle Scholar
  69. Pérez FL (1989) Some effects of giant Andean stem-rosettes on ground microclimate, and their ecological significance. Int J Biometeorol 33:131–135CrossRefGoogle Scholar
  70. Rada F, Azócar A, Rojas-Altuve A (2012) Water relations and gas exchange in Coespeletia moritziana (Sch. Bip) Cuatrec., a giant rosette species of the high tropical Andes. Photosynthetica 50:429–436CrossRefGoogle Scholar
  71. Rada F, Azócar A, Briceño B, González J (1998) Leaf gas Exchange in Espeletia schultzii Wedd, a giant caulescent rosette along an altitudinal gradient in the Venezuelan Andes. Acta Oecol 19:73–79CrossRefGoogle Scholar
  72. Rada F, Goldstein G, Azócar A, Meinzer F (1985a) Freezing avoidance in andean giant rosette plants. Plant Cell Environ 8:501–507, Leicester, Gran BretañaGoogle Scholar
  73. Rada F, Goldstein G, Azócar A, Meinzer F (1985b) Daily and seasonal osmotic changes in a tropical treeline species. J. Exp. Botany 36(167):989–1000CrossRefGoogle Scholar
  74. Rada F, Goldstein G, Azócar A, Torres F (1987) Supercooling along an altitudinal gradient in Espeletia schulzii a caulescent giant rosette species. J Exp Bot 38:491–497CrossRefGoogle Scholar
  75. Rada F, González J, Briceño B, Azócar A, Jaimez R (1992) Net photosynthesis-leaf temperature relations in plant species with different height along an altitudinal gradient. Oecol Plant 13:535–542Google Scholar
  76. Rauscher JT (2002) Molecular phylogenetics of the Espeletia complex (Asteraceae): evidence from mrDNA ITS sequences on the closest relatives of an Andean adaptive radiation. Am J Bot 89:1074–1084CrossRefPubMedGoogle Scholar
  77. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds A (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60CrossRefPubMedGoogle Scholar
  78. Rundel PW (1994) Tropical alpine climates. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Cambridge University Press, Cambridge, pp 21–44CrossRefGoogle Scholar
  79. Sakai A, Larcher W (1987) Frost survival of plants: responses and adaptations to freezing stress. Springer, Berlin, 321 ppCrossRefGoogle Scholar
  80. Salick J, Zhendong F, Byg A (2009) Eastern Himalayan alpine plant ecology, Tibetan ethnobotany, and climate change. Glob Environ Change 19:147–155CrossRefGoogle Scholar
  81. Sarmiento G (1986) Ecologically crucial features of climate in high tropical mountains. In: Vuilleumier F, Monasterio M (eds) High altitude tropical biogeography. Oxford University Press, Oxford, pp 11–45Google Scholar
  82. Schulze ED, Beck E, Scheibe R, Ziegler P (1985) Carbon dioxide assimilation and stomatal response of afroalpine giant rosette plants. Oecologia 65:207–213CrossRefGoogle Scholar
  83. Smith AP (1974) Bud temperature in relation to nyctinastic leaf movement in an Andean giant rosette plant. Biotropica 6:263–266CrossRefGoogle Scholar
  84. Smith AP (1979) The function of dead leaves in Espeletia schultzii (Compositae) an Andean giant rosette species. Biotropica 11:43–47CrossRefGoogle Scholar
  85. Smith AP (1980) The paradox of plant height in an Andean giant rosette species. J Ecol 68:63–68CrossRefGoogle Scholar
  86. Smith AP (1981) Growth and population dynamics of Espeletia (Compositae) of the Venezuelan Andes. Smithsonian Contribut Botany 48:1–45CrossRefGoogle Scholar
  87. Smith AP, Young TP (1987) Tropical alpine plant ecology. Annu Rev Ecol Syst 18:137–158CrossRefGoogle Scholar
  88. Squeo F, Rada F, Azócar A, Goldstein G (1991) Freezing tolerance and avoidance in high tropical Andean plants: is it equally represented in species with different plant height? Oecologia 86:378–382CrossRefGoogle Scholar
  89. Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plants’ species distribution: future challenges. Perspect Plant Ecol Evol Systemat 9:137–152CrossRefGoogle Scholar
  90. Troll C (1968) The cordilleras of the tropical Americas. In: Troll C (ed) Geoecology of the mountainous regions of the tropical Americas. Dumbler, Bonn, pp 15–55Google Scholar
  91. Vuille M, Bradley RS, Werner M, Keimig F (2003) 20th century climate change in the tropical Andes: observations and model results. Clim Change 59:75–99CrossRefGoogle Scholar
  92. Walther G, Beiβner S, Pott R (2005) Climate change and high mountain vegetation shifts. Mountain ecosystems, pp 77–96Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Instituto de Ciencias Ambientales y Ecológicas de los Andes Tropicales (ICAE) Facultad de CienciasUniversidad de Los AndesMéridaVenezuela

Personalised recommendations