Advertisement

Palm Physiology and Distribution in Response to Global Environmental Change

  • Heidi J. RenningerEmail author
  • Nathan G. Phillips
Chapter
Part of the Tree Physiology book series (TREE, volume 6)

Abstract

Palms (Arecaceae) represent one of the oldest surviving monocot families maintaining a presence in tropical rainforest-like biomes throughout history. Comprising a variety of plant growth forms (arborescent, acaulescent, lianoid), palms are one of the few monocots that achieve significant heights. In doing so, they face many of the same environmental and physiological constraints as dicotyledonous trees including long-distance water transport and longevity making them an important, but largely missing, component of comparative tree physiological studies. Palms differ from dicot trees in several key ways including lacking dormancy mechanisms that restrict them to mainly tropical climates. Palms also lack a vascular cambium and the constant addition of new conduits, and instead, rely exclusively on vascular bundles for fluid transport and mechanical stability. The majority of arborescent palm species also possess only one apical meristem complex from which all new leaf and stem growth originates thereby limiting their options for leaf positioning and light acquisition. These differences will likely alter the response of palms to global change compared with dicot species. Temperature increases have the potential to extend palm distributions to higher elevations and latitudes, but could negatively affect individual palm carbon balance. Within the tropics, precipitation has been shown to have the strongest positive effect on palm species richness and future changes in rainfall patterns will likely alter palm distributions. Therefore, global change has the potential to alter both palm distributions and individual physiological functioning, but palms will likely continue to have a considerable presence in many tropical ecosystems.

Keywords

Agriculture Architecture Climate change Global distribution Leaf life span 

Notes

Acknowledgments

HJR acknowledges the National Science Foundation East Asia and Pacific Summer Institute program for support during 2008 (NSF grant OISE – 0813242). NGP and HJR acknowledge the National Science Foundation for research support (NSF grant IOB #0517521).

References

  1. Alves LF, Martins FR, Santos FAM (2004) Allometry of a neotropical palm, Euterpe edulis Mart. Acta Botanica Brasil 18:369–374CrossRefGoogle Scholar
  2. Andreazzi CS, Pires AS, Fernandez FAS (2009) Mamíferos e palmeiras neotropicais: Interações em paisagens fragmentadas. Oecologia Brasiliensis 13:554–574Google Scholar
  3. Archibald SB, Morse GE, Greenwood DR, Mathewes RW (2014) Fossil palm beetles refine upland winter temperatures in the early eocene climatic optimum. Proc Natl Acad Sci USA 111:8095–8100PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ataroff M, Schwarzkopf T (1992) Leaf production, reproductive patterns, field germination and seedling survival in Chamaedorea bartlingiana, a dioecious understory palm. Oecologia 92:250–256CrossRefGoogle Scholar
  5. Avalos G, Fernández Otárola M (2010) Allometry and stilt root structure of the neotropical palm Euterpe precatoria (Arecaceae) across sites and successional stages. Am J Bot 97:388–394PubMedCrossRefGoogle Scholar
  6. Avalos G, Sylvester O (2010) Allometric estimation of total leaf area in the neotropical palm Euterpe oleracea at La Selva, Costa Rica. Trees 24:969–974CrossRefGoogle Scholar
  7. Avalos G, Salazar D, Araya AL (2005) Stilt root structure in the neotropical palms Iriartea deltoidea and Socratea exorrhiza. Biotropica 37:44–53CrossRefGoogle Scholar
  8. Baker WJ, Couvreur TLP (2012) Biogeography and distribution patterns of Southeast Asian palms. In: Gower D, Johnson K, Richardson J, Rosen B, Rüber L, Williams S (eds) Biotic evolution and environmental change in Southeast Asia. Cambridge University Press, Cambridge, pp 164–190CrossRefGoogle Scholar
  9. Baker WJ, Couvreur TLP (2013a) Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. II. Diversification history and origin of regional assemblages. J Biogeogr 40:286–298CrossRefGoogle Scholar
  10. Baker WJ, Couvreur TLP (2013b) Global biogeography and diversification of palms sheds light on the evolution of tropical lineages I. Historical biogeography. J Biogeogr 40:274–285CrossRefGoogle Scholar
  11. Balslev H, Luteyn JL, Øllgaard B, Holm-Nielsen LB (1987) Composition and structure of adjacent unflooded and floodplain forest in Amazonian Ecuador. Opera Bot 92:37–57Google Scholar
  12. Baslam M, Qaddoury A, Goicoechea N (2014) Role of native and exotic mycorrhizal symbiosis to develop morphological, physiological and biochemical responses coping with water drought of date palm, Phoenix dactylifera. Trees 28:161–172CrossRefGoogle Scholar
  13. Berry EW (1914) The upper cretaceous and eocene floras of South Carolina and Georgia No. 84. US Government Printing Office, Washington DC, USAGoogle Scholar
  14. Bichet A, Wild M, Folini D, Schär C (2012) Causes for decadal variations of wind speed over land: Sensitivity studies with a global climate model. Geophys Res Lett 39. doi: 10.1029/2012GL051685 Google Scholar
  15. Bjorholm S, Svenning JC, Skov F, Balslev H (2005) Environmental and spatial controls of palms (Arecaceae) species richness across the Americas. Global Ecol Biogeogr 14:423–429CrossRefGoogle Scholar
  16. Bjorholm S, Svenning JC, Baker WJ, Skov F, Balslev H (2006) Historical legacies in the geographical diversity patterns of New World palm (Arecaceae) subfamilies. Bot J Linn Soc 151:113–125CrossRefGoogle Scholar
  17. Blach-Overgaard A, Svenning JC, Dransfield J, Greve M, Balslev H (2010) Determinants of palm species distributions across Africa: the relative roles of climate, non-climatic environmental factors, and spatial constraints. Ecography 33:380–391Google Scholar
  18. Bonadie WA, Bacon PR (2000) Year-round utilisation of fragmented palm swamp forest by Red-bellied macaws (Ara manilata) and Orange-winged parrots (Amazona amazonica) in the Nariva Swamp (Trinidad). Biol Conserv 95:1–5CrossRefGoogle Scholar
  19. Breure CJ (1988) The effect of palm age and planting density on the partitioning of assimilates in oil palm (Elaeis guineensis). Exp Agric 24:53–66CrossRefGoogle Scholar
  20. Brightsmith D, Bravo A (2006) Ecology and management of nesting blue-and-yellow macaws (Ara ararauna) in Mauritia palm swamps. Biodivers Conserv 15:4271–4287CrossRefGoogle Scholar
  21. Bullock SH, Heath D (2006) Growth rates and age of native palms in the Baja California desert. J Arid Environ 67:391–402CrossRefGoogle Scholar
  22. Cámara-Leret R, Paniagua-Zambrana N, Balslev H, Barfod A, Copete JC, Macía MJ (2014) Ecological community traits and traditional knowledge shape palm ecosystem services in northwestern South America. For Ecol Manage 334:28–42CrossRefGoogle Scholar
  23. Cavaleri M, Oberbauer SF, Ryan MG (2008) Foliar and ecosystem respiration in an old-growth tropical rain forest. Plant, Cell Environ 31:473–483CrossRefGoogle Scholar
  24. Cepeda-Cornejo V, Dirzo R (2010) Sex-related differences in reproductive allocation, growth, defense and herbivory in three dioecious neotropical palms. PLoS ONE 5. doi: 10.1371/journal.pone.0009824 Google Scholar
  25. Chao CCT, Krueger RR (2007) The date palm (Phoenix dactylifera L.): overview of biology, uses, and cultivation. HortScience 42:1077–1082Google Scholar
  26. Chazdon RL (1985) Leaf display, canopy structure, and light interception of two understory palm species. Am J Bot 72:1493–1502CrossRefGoogle Scholar
  27. Chazdon RL (1986) The costs of leaf support in understory palms: economy versus safety. Am Nat 127:9–30CrossRefGoogle Scholar
  28. Chown SL, Gaston KJ (2000) Areas, cradles and museums: the latitudinal gradient in species richness. Trends Ecol Evol 15:311–315PubMedCrossRefGoogle Scholar
  29. Clark DA, Clark DB, Sandoval RM, Vinicio Castro MC (1995) Edaphic and human effects on landscape-scale distributions of tropical rain forest palms. Ecology 76:2581–2594CrossRefGoogle Scholar
  30. Clement CR, Weber JC, van Leeuwen J, Astorga Domian C, Cole DM, Arévalo Lopez LA, Argüello H (2004) Why extensive research and development did not promote use of peach palm fruit in Latin America. Agrofor Syst 61:195–206Google Scholar
  31. Clement CR, Santos RP, Desmouliere SJM, Ferreira EJL, Tomé J, Neto F (2009) Ecological adaptation of wild peach palm, its in situ conservation and deforestation-mediated extinction in Southern Brazilian Amazonia. PLoS ONE 4. doi: 10.1371/journal.pone.0004564 Google Scholar
  32. Cochrane MA (2003) Fire science in rainforests. Nature 421:913–919PubMedCrossRefGoogle Scholar
  33. Cochrane MA (2009) Tropical fire ecology: Climate change, land use and ecosystem dynamics. Praxis Publishing Ltd, ChichesterCrossRefGoogle Scholar
  34. Cohen Y, Alchanatis V, Prigojin A, Levi A, Soroker V, Cohen Y (2012) Use of aerial thermal imaging to estimate water status of palm trees. Precision Agric 13:123–140CrossRefGoogle Scholar
  35. Coley PD, Kursar TA (1996) Causes and consequences of epiphyll colonization. In: Mulkey S, Chazdon R, Smith A (eds) Tropical forest plant physiology. Chapman Hall, New York, pp 337–362CrossRefGoogle Scholar
  36. Corley RHV (1983) Photosynthesis and age of oil palm leaves. Photosynthetica 17:97–100Google Scholar
  37. Cornett JW (1991) Population dynamics of the palm, Washingtonia filifera, and global warming. San Bernadino County Mus Assoc Q 39:46–47Google Scholar
  38. Couvreur TLP (2014) Odd man out: why are there fewer plant species in African rain forests? Plant Syst Evol. doi: 10.1007/s00606-014-1180-z Google Scholar
  39. Couvreur TLP, Baker WJ (2013) Tropical rain forest evolution: palms as a model group. BMC Biol 11. doi: 10.1186/1741-7007-11-48
  40. Couvreur TLP, Forest F, Baker WJ (2011) Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms. BMC Biol 9. doi: 10.1186/1741-7007-9-44
  41. Davis TA (1961) High root-pressure in palms. Nature 192:277–278CrossRefGoogle Scholar
  42. de Azevedo PV, de Sousa I, da Silva B, da Silva VPR (2006) Water-use efficiency of dwarf-green coconut (Cocos nucifera L.) orchards in northeast Brazil. Agric Water Manage 84:259–264CrossRefGoogle Scholar
  43. De Steven D, Windsor DM, Putz FE, de Leon B (1987) Vegetative and reproductive phenologies of a palm assemblage in Panama. Biotropica 19:342–356CrossRefGoogle Scholar
  44. Dransfield J, Uhl NW, Asmussen CB, Baker WJ, Harley MM, Lewis CE (2008) Genera Palmarum: the evolution and classification of palms. Kew Publishing, KewGoogle Scholar
  45. Dufrene E, Saugier B (1993) Gas exchange of oil palm in relation to light, vapour pressure deficit, temperature and leaf age. Funct Ecol 7:97–104CrossRefGoogle Scholar
  46. Dufrene E, Dubos B, Rey H, Quencez P, Saugier B (1992) Changes in evapotranspiration from an oil palm stand (Elaeis guineensis Jacq.) exposed to seasonal soil water deficits. Acta Oecol 13:299–314Google Scholar
  47. Duryea ML, Blakeslee GM, Hubbard WG, Vasquez RA (1996) Wind and trees: a survey of homeowners after Hurricane Andrew. J Arboric 22:44–50Google Scholar
  48. Eiserhardt WL, Bjorholm S, Svenning JC, Rangel TF, Balslev H (2011a) Testing the water-energy theory on American palms (Arecaceae) using geographically weighted regression. PLoS ONE 6. doi: 10.1371/journal.pone.0027027 Google Scholar
  49. Eiserhardt WL, Svenning JC, Kissling WD, Balslev H (2011b) Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Ann Bot 108:1391–1416PubMedPubMedCentralCrossRefGoogle Scholar
  50. El-Juhany LI (2010) Degradation of date palm trees and date production in Arab countries: causes and potential rehabilitation. Aust J Basic Appl Sci 4:3998–4010Google Scholar
  51. Eskafi FM, Basham HG, McCoy RE (1986) Decreased water transport in lethal yellowing-diseased coconut palms. Trop Agric (Trinidad) 63:225–228Google Scholar
  52. FAOSTAT Statistics Database (2014) UN Food and Agricultural Organisation. http://faostat3.fao.org/home/E. Accessed 21 Oct 2014
  53. Fisher JB, Burch JN, Noblick LR (1996) Stem structure of the Cuban belly palm (Gastrococos crispa). Principes 40:125–128Google Scholar
  54. Fowler D, Nemitz E, Misztal P, Di Marco C, Skiba U, Ryder J, Helfter C, Cape JN, Owen S, Dorsey J, Gallagher MW, Coyle M, Phillips G, Davison B, Langford B, MacKenzie R, Muller J, Siong J, Dari-Salisburgo C, Di Carlo P, Aruffo E, Giammaria R, Pyle JA, Hewitt CN (2011) Effects of land use on surface-atmosphere exchanges of trace gases and energy in Borneo: comparing fluxes over oil palm plantations and a rainforest. Philos Trans R Soc Lond, Ser B: Biol Sci 366:3196–3209CrossRefGoogle Scholar
  55. Fragoso JMV, Silvius KM, Correa JA (2003) Long-distance seed dispersal by tapirs increases seed survival and aggregates tropical trees. Ecology 84:1998–2006CrossRefGoogle Scholar
  56. Galetti M, Donatti CI, Pires AS, Guimarães PR Jr, Jordano P (2006) Seed survival and dispersal of an endemic Atlantic forest palm: the combined effects of defaunation and forest fragmentation. Bot J Linn Soc 151:141–149CrossRefGoogle Scholar
  57. Gatti MG, Campanello PI, Montti LF, Goldstein G (2008) Frost resistance in the tropical palm Euterpe edulis and its pattern of distribution in the Atlantic Forest of Argentina. Forest Ecol Manage 256:633–640Google Scholar
  58. Gatti MG, Campanello PI, Goldstein G (2011) Growth and leaf production in the tropical palm Euterpe edulis: Light conditions versus developmental constraints. Flora 206:742–748Google Scholar
  59. Germer J, Sauerborn J (2007) Estimation of the impact of oil palm plantation establishment on greenhouse gas balance. Environ Dev Sustain 10:697–716Google Scholar
  60. Gerritsma W, Soebagyo FX (1999) An analysis of the growth of leaf area of oil palms in Indonesia. Exp Agric 35:293–308CrossRefGoogle Scholar
  61. Goldammer JG, Price C (1998) Potential impacts of climate change on fire regimes in the tropics based on MAGICC and a GISS GCM-derived lightning model. In: Markham A (ed) Potential impacts of climate change on tropical forest ecosystems. Kluwer Academic Publishers, Dordrecht, pp 133–156CrossRefGoogle Scholar
  62. Gomes FP, Prado CHBA (2007) Ecophysiology of coconut palm under water stress. Braz J Plant Physiol 19:377–391CrossRefGoogle Scholar
  63. Gomes FP, Oliva MA, Mielke MS, de Almeida AAF, Leite HG, Aquino LA (2008) Photosynthetic limitations in leaves of young Brazilian Green Dwarf coconut (Cocos nucifera L. ‘nana’) palm under well-watered conditions or recovering from drought stress. Environ Exp Bot 62:195–204CrossRefGoogle Scholar
  64. Harley MM (2006) A summary of fossil records for Arecaceae. Bot J Linn Soc 151:39–67CrossRefGoogle Scholar
  65. Harries H (1978) The evolution, dissemination and classification of Cocos nucifera L. Bot Rev 44:265–319CrossRefGoogle Scholar
  66. Hartmann KL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner GK et al. (eds) Climate change 2013: the physical basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  67. Henderson A (1990) Arecaceae Part I. Introduction and the Iriarteinae. Flora Neotropica. New York Botanical Garden, New YorkGoogle Scholar
  68. Henderson A, Galeano G, Bernal R (1995) Field guide to the palms of the Americas. Princeton University Press, PrincetonGoogle Scholar
  69. Henson IE (2004) Estimating maintenance respiration of oil palm. Oil Palm Bulletin 48:1–10Google Scholar
  70. Henson IE, Chang KC (2000) Oil palm productivity and its component processes. Advances in oil palm research, vol 1. Malaysian Palm Oil Board, Kajang, Malaysia, pp 97–145Google Scholar
  71. Hewitt CN, MacKenzie AR, Di Carlo P, Di Marco CF, Dorsey JR, Evans M, Fowler D, Gallagher MW, Hopkins JR, Jones CE, Langford B, Lee JD, Lewis AC, Lim SF, McQuaid J, Misztal P, Moller SJ, Monks PS, Nemitz E, Oram DE, Owen SM, Phillips GJ, Pugh TAM, Pyle JA, Reeves CE, Ryder J, Siong J, Skiba U, Stewart DJ (2009) Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution. Proc Natl Acad Sci USA 106:18447–18452PubMedPubMedCentralCrossRefGoogle Scholar
  72. Hogan KP (1988) Photosynthesis in two newtropical palm species. Funct Ecol 2:371–377CrossRefGoogle Scholar
  73. Holbrook NM, Sinclair TR (1992a) Water balance in the arborescent palm, Sabal palmetto. I. Stem structure, tissue water release properties and leaf epidermal conductance. Plant, Cell Environ 15:393–399CrossRefGoogle Scholar
  74. Holbrook NM, Sinclair TR (1992b) Water balance in the arborescent palm, Sabal palmetto. II. Transpiration and stem water storage. Plant, Cell Environ 15:401–409CrossRefGoogle Scholar
  75. Ibrahim MH, Jaafar HZE (2012) Impact of elevated carbon dioxide on primary, secondary metabolites and antioxidant responses of Eleais guineensis Jacq. (oil palm) seedlings. Molecules 17:5195–5211PubMedCrossRefGoogle Scholar
  76. James KR, Haritos N, Ades PK (2006) Mechanical stability of trees under dynamic loads. Am J Bot 93:1522–1530PubMedCrossRefGoogle Scholar
  77. Janssen T, Bremer K (2004) The age of major monocot groups inferred from 800 + rbcL sequences. Bot J Linn Soc 146:385–398CrossRefGoogle Scholar
  78. Kahn F (1988) Ecology of economically important palms in Peruvian Amazonia. Adv Econ Bot 6:42–49Google Scholar
  79. Kahn F, Mejia K (1990) Palm communities in wetland forest ecosystems of Peruvian Amazonia. For Ecol Manage 33–34:169–179CrossRefGoogle Scholar
  80. Kahn F, Mejia K (1991) The palm communities of two ‘terra firme’ forests in Peruvian Amazonia. Principes 35:22–26Google Scholar
  81. Kasturi Bai KV, Rajagopal V (2000) Osmotic adjustment as a mechanism for drought tolerance in coconut (Cocos nucifera L.). Indian J Plant Physiol 5:320–323Google Scholar
  82. Kasturibai KV, Voleti SR, Rajagopal V (1988) Water relations of coconut palms as influenced by environmental variables. Agric Meteorol 43:193–199CrossRefGoogle Scholar
  83. Kessler M (2000) Upslope-directed mass effect in palms along an Andean elevational gradient: A cause for high diversity at mid-elevations? Biotropica 32:756–759CrossRefGoogle Scholar
  84. Killmann W (1983) Some physical properties of the coconut palm stem. Wood Sci Technol 17:167–185CrossRefGoogle Scholar
  85. Kissling WD, Baker WJ, Balslev H, Barfod AS, Borchsenius F, Dransfield J, Govaerts R, Svenning JC (2012) Quaternary and pre-Quaternary historical legacies in the global distribution of a major tropical plant lineage. Global Ecol Biogeogr 21:909–921CrossRefGoogle Scholar
  86. Koh LP, Miettinen J, Liew SC, Ghazoul J (2011) Remotely sensed evidence of tropical peatland conversion to oil palm. Proc Natl Acad Sci USA 108:5127–5132PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kreft H, Sommer JH, Barthlott W (2006) The significance of geographic range size for spatial diversity patterns in Neotropical palms. Ecography 29:21–30CrossRefGoogle Scholar
  88. Kristiansen T, Svenning JC, Grández C, Salo J, Balslev H (2009) Commonness of Amazonian palm (Arecaceae) species: cross-scale links and potential determinants. Acta Oecol 35:554–562CrossRefGoogle Scholar
  89. Kristiansen T, Svenning JC, Pedersen D, Eiserhardt WL, Grández C, Balslev H (2011) Local and regional palm (Arecaceae) species richness patterns and their cross-scale determinants in the western Amazon. J Ecol 99:1001–1015CrossRefGoogle Scholar
  90. Kurup VVGK, Voleti SR, Rajagopal V (1993) Influence of weather variables on the content and composition of leaf surface wax in coconut. J Plant Crops 21:71–80Google Scholar
  91. Kvacek J, Herman AB (2004) Monocotyledons from the Early Campanian (Cretaceous) of Grünbach, Lower Austria. Rev Palaeobot Palynol 128:323–353CrossRefGoogle Scholar
  92. Legros S, Mailet-Serra I, Clement-Vidal A, Caliman JP, Siregar FA, Fabre D, Dingkuhn M (2009) Role of transitory carbon reserves during adjustment to climate variability and source-sink imbalances in oil palm (Elaeis guineensis). Tree Physiol 29:1199–1211PubMedCrossRefGoogle Scholar
  93. Leon R, Santamaria JM, Alpizar L, Escamilla JA, Oropeza C (1996) Physiological and biochemical changes in shoots of coconut palms affected by lethal yellowing. New Phytol 134:227–234CrossRefGoogle Scholar
  94. Lockett L (2004) The Sabal palm: restoring a species we didn’t know we had (Texas). Ecol Restor 22:137–138Google Scholar
  95. Lugo AE, Rivera Batlle CT (1987) Leaf production, growth rate, and age of the palm Prestoea montana in the Luquillo Experimental Forest, Puerto Rico. J Trop Ecol 3:151–161CrossRefGoogle Scholar
  96. Mäkelä A, Sievänen R (1992) Height growth strategies in open-grown trees. J Theor Biol 159:443–467CrossRefGoogle Scholar
  97. Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant, Cell Environ 22:715–740CrossRefGoogle Scholar
  98. Martinez S, Cordova I, Maust BE, Oropeza C, Santamaria JM (2000) Is abscisic acid responsible for abnormal stomatal closure in coconut palms showing lethal yellowing? J Plant Physiol 156:319–322CrossRefGoogle Scholar
  99. Martínez-Ramos M, Alvarez-Buylla E, Sarukhán J, Piñero D (1988) Treefall age determination and gap dynamics in a tropical forest. J Ecol 76:700–716CrossRefGoogle Scholar
  100. Maust BE, Espadas F, Talavera C, Aguilar M, Santamaria JM, Oropeza C (2003) Changes in carbohydrates metabolism in coconut palms infected with the lethal yellowing phytoplasma. Phytopathology 93:976–981PubMedCrossRefGoogle Scholar
  101. McDonough J, Zimmermann MH (1979) Effect of lethal yellowing on xylem pressure in coconut palms. Principes 23:132–137Google Scholar
  102. Mialet-Serra I, Clément A, Sonderegger N, Roupsard O, Jourdan C, Labouisse JP, Dingkuhn M (2005) Assimilate storage in vegetative organs of coconut (Cocos nucifera L.). Exp Agric 41:1–14CrossRefGoogle Scholar
  103. Mialet-Serra I, Clement-Vidal A, Roupsard O, Jourdan C, Dingkuhn M (2008) Whole-plant adjustments in coconut (Cocos nucifera) in response to sink-source imbalance. Tree Physiol 28:1199–1209PubMedCrossRefGoogle Scholar
  104. Milburn JA, Davis TA (1973) Role of pressure in xylem transport of coconut and other palms. Physiol Plant 29:415–420CrossRefGoogle Scholar
  105. Milburn JA, Zimmermann MH (1977) Preliminary studies on sapflow in Cocos nucifera L II. Phloem transport. New Phytol 79:543–558CrossRefGoogle Scholar
  106. Misztal PK, Nemitz E, Langford B, Di Marco CF, Phillips GJ, Hewitt CN, MacKenzie AR, Owen SM, Fowler D, Heal MR, Cape JN (2011) Direct ecosystem fluxes of volatile organic compounds from oil palms in South-East Asia. Atmos Chem Phys 11:8995–9017CrossRefGoogle Scholar
  107. Morley RJ (2000) Origin and evolution of tropical rain forests. Wiley, ChichesterGoogle Scholar
  108. Navarro MNV, Jourdan C, Sileye T, Braconnier S, Mailet-Serra I, Saint-Andre L, Dauzat J, Nouvellon Y, Epron D, Bonnefond JM, Berbigier P, Rouziere A, Bouillet JP, Roupsard O (2008) Fruit development, not GPP, drives seasonal variation in NPP in a tropical palm plantation. Tree Physiol 28:1661–1674PubMedCrossRefGoogle Scholar
  109. Niklas KJ (1992) Plant biomechanics: an engineering approach to plant form and function. The University of Chicago Press, ChicagoGoogle Scholar
  110. Niklas KJ (1994) Plant allometry: the scaling of form and process. The University of Chicago Press, ChicagoGoogle Scholar
  111. Niklas KJ (1999) A mechanical perspective on foliage leaf form and function. New Phytol 143:19–31CrossRefGoogle Scholar
  112. Niklas KJ, Cobb E, Marler T (2006) A comparison between the record height-to-stem diameter allometries of pachycaulis and leptocaulis species. Ann Bot 97:79–83PubMedPubMedCentralCrossRefGoogle Scholar
  113. Oyama K (1993) Are age and height correlated in Chamaedorea tepejilote (Palmae)? J Trop Ecol 9:381–385CrossRefGoogle Scholar
  114. Parthasarathy MV, Klotz LH (1976) Palm “wood” II. Ultrastructural apsects of sieve elements, tracheary elements and fibers. Wood Sci Technol 10:247–271Google Scholar
  115. Parthasarathy MV, Tomlinson PB (1967) Anatomical features of metaphloem in stems of Sabal, Cocos and two other palms. Am J Bot 54:1143–1151CrossRefGoogle Scholar
  116. Peres CA (1994) Composition, density, and fruiting phenology of arborescent palms in an Amazonian terra firme forest. Biotropica 26:285–294CrossRefGoogle Scholar
  117. Peters HA, Pauw A, Silman MR, Terborgh JW (2004) Falling palm fronds structure Amazonian rainforest sapling communities. Proc R Soc London, Ser B: Biol Lett 271:S367–S369CrossRefGoogle Scholar
  118. Phillips N, Buckley TN, Tissue DT (2008) Capacity of old trees to respond to environmental change. J Integr Plant Biol 50:1355–1364PubMedCrossRefGoogle Scholar
  119. Pivovaroff AL, Sack L, Santiago LS (2014) Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis. New Phytol 203:842–850PubMedCrossRefGoogle Scholar
  120. Prado CHBA, Passos EEM, De Moraes JAPV (2001) Photosynthesis and water relations of six tall genotypes of Cocos nucifera in wet and dry seasons. S Afr J Bot 67:169–176CrossRefGoogle Scholar
  121. Pritchard Miller R, Nair PKR (2006) Indigenous agroforestry systems in Amazonia: from prehistory to today. Agrofor Syst 66:151–164CrossRefGoogle Scholar
  122. Rao AS (1989) Water requirements of young coconut palms in a humid tropical climate. Irrig Sci 10:245–249CrossRefGoogle Scholar
  123. Ratsirarson J, Silander JA Jr, Richard AF (1996) Conservation and management of a threatened Madagascar palm species, Neodypsis decaryi, Jumelle. Conserv Biol 10:40–52CrossRefGoogle Scholar
  124. Rees AR (1961) Midday closure of stomata in the oil palm Elaeis guineensis Jacq. J Exp Bot 12:129–146CrossRefGoogle Scholar
  125. Renninger HJ, Phillips N (2010) Intrinsic and extrinsic hydraulic factors in varying sizes of two Amazonian palm species (Iriartea deltoidea and Mauritia flexuosa) differing in development and growing environment. Am J Bot 97:1926–1936PubMedCrossRefGoogle Scholar
  126. Renninger HJ, Phillips N (2011) Hydraulic properties of fronds from palms of varying height and habitat. Oecologia 167:925–935PubMedCrossRefGoogle Scholar
  127. Renninger HJ, Phillips N (2012) “Secondary stem lengthening” in the palm Iriartea deltoidea (Arecaceae) provides an efficient and novel method for height growth in a tree form. Am J Bot 99:607–613PubMedCrossRefGoogle Scholar
  128. Renninger HJ, Phillips N, Hodel DR (2009) Comparative hydraulic and anatomic properties in palm trees (Washingtonia robusta) of varying heights: implications for hydraulic limitation to increased height growth. Trees 23:911–921CrossRefGoogle Scholar
  129. Renninger HJ, Phillips N, Salvucci GD (2010) Wet- vs. dry-season transpiration in an Amazonian rain forest palm Iriartea deltoidea. Biotropica 42:470–478CrossRefGoogle Scholar
  130. Renninger HJ, McCulloh KA, Phillips N (2013) A comparison of the hydraulic efficiency of a palm species (Iriartea deltoidea) with other wood types. Tree Physiol 33:152–160PubMedCrossRefGoogle Scholar
  131. Repellin A, Laffray D, Daniel C, Braconnier S, Zuily-Fodil Y (1997) Water relations and gas exchange in young coconut palm (Cocos nucifera L.) as influenced by water deficit. Can J Bot 75:18–27CrossRefGoogle Scholar
  132. Rich PM (1986) Mechanical architecture of arborescent rain forest palms. Principes 30:117–131Google Scholar
  133. Rich PM (1987) Developmental anatomy of the stem of Welfia georgii, Iriartea gigantea and other arborescent palms; implications for mechanical support. Am J Bot 34:792–802CrossRefGoogle Scholar
  134. Rich PM, Helenurm K, Kearns D, Morse SR, Palmer MW, Short L (1986) Height and stem diameter relationships for dicotyledonous trees and arborescent palms of Costa Rican tropical wet forest. Bull Torrey Bot Club 113:241–246CrossRefGoogle Scholar
  135. Rich PM, Holbrook NM, Luttinger N (1995) Leaf development and crown geometry of two Iriarteoid palms. Am J Bot 82:328–336CrossRefGoogle Scholar
  136. Roupsard O, Bonnefond JM, Irvine M, Berbigier P, Nouvellon Y, Dauzat J, Taga S, Hamel O, Jourdan C, Saint-André L, Mailet-Serra I, Labouisse JP, Epron D, Joffre R, Braconnier S, Rouzière A, Navarro M, Bouillet JP (2006) Partitioning energy and evapo-transpiration above and below a tropical palm canopy. Agric For Meteorol 139:252–268CrossRefGoogle Scholar
  137. Rüggeberg M, Speck T, Paris O, Lapierre C, Pollet B, Koch G, Burgert I (2008) Stiffness gradients in vascular bundles of the palm Washingtonia robusta. Proc R Soc Biol Sci Ser B 275:2221–2229CrossRefGoogle Scholar
  138. Rüggeberg M, Speck T, Burgert I (2009) Structure-function relationships of different vascular bundle types in the stem of the Mexican fanpalm (Washingtonia robusta). New Phytol 182:443–450PubMedCrossRefGoogle Scholar
  139. Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bioscience 47:235–242CrossRefGoogle Scholar
  140. Ryan MG, Phillips N, Bond BJ (2006) The hydraulic limitation hypothesis revisited. Plant, Cell Environ 29:367–381CrossRefGoogle Scholar
  141. Salm R, Jalles-Filho E, Schuck-Paim C (2005) A model for the importance of large arborescent palms in the dynamics of seasonally-dry Amazonian forests. Biota Neotropica 5:1–6Google Scholar
  142. Sayer J, Ghazoul J, Nelson P, Boedhihartono AK (2012) Oil palm expansion transforms tropical landscapes and livelihoods. Global Food Security 1:114–119CrossRefGoogle Scholar
  143. Schatz GE, Williamson GB, Cogswell CM, Stam AC (1985) Stilt roots and growth of arboreal palms. Biotropica 17:206–209CrossRefGoogle Scholar
  144. Shabani F, Kumar L, Taylor S (2012) Climate change impacts on the future distribution of date palms: A modeling exercise using CLIMEX. PLoS ONE 7. doi: 10.1371/journal.pone.0048021 Google Scholar
  145. Shivashankar S, Kasturi Bai KV, Rajagopal V (1991) Leaf water potential, stomatal resistance and activities of enzymes during the development of moisture stress in the coconut palm. Trop Agric 68:106–110Google Scholar
  146. Sillett SC, Van Pelt R, Koch GW, Ambrose AR, Carroll AL, Antoine ME, Mifsud BM (2010) Increasing wood production through old age in tall trees. For Ecol Manage 259:976–994CrossRefGoogle Scholar
  147. Silva MG, Tabarelli M (2001) Seed dispersal, plant recruitment and spatial distribution of Bactris acanthocarpa Martius (Arecaceae) in a remnant of Atlantic forest in northeast Brazil. Acta Oecol 22:259–268CrossRefGoogle Scholar
  148. Smith BG (1989) The effects of soil water and atmospheric vapour pressure deficit on stomatal behaviour and photosynthesis in the oil palm. J Exp Bot 40:647–651CrossRefGoogle Scholar
  149. Souza AF, Martins FR (2004) Population structure and dynamics of a neotropical palm in fire-impacted fragments of the Brazilian Atlantic Forest. Biodivers Conserv 13:1161–1632CrossRefGoogle Scholar
  150. Sperling O, Shapira O, Cohen S, Tripler E, Schwartz A, Lazarovitch N (2012) Estimating sap flux densities in date palm trees using the heat dissipation method and weighing lysimeters. Tree Physiol 32:1171–1178PubMedCrossRefGoogle Scholar
  151. Sperling O, Lazarovitch N, Schwartz A, Shapira O (2014a) Effects of high salinity irrigation on growth, gas-exchange, and photoprotection in date palms (Phoenix dactylifera L., cv. Medjool). Environ Exp Bot 99:100–109CrossRefGoogle Scholar
  152. Sperling O, Shapira O, Tripler E, Schwartz A, Lazarovitch N (2014b) A model for computing date palm water requirements: as affected by salinity. Irrig Sci 32:341–350CrossRefGoogle Scholar
  153. Sperry JS (1986) Relationship of xylem embolism to xylem pressure potential, stomatal closure, and shoot morphology in the palm Rhapis excelsa. Plant Physiol 80:110–116PubMedPubMedCentralCrossRefGoogle Scholar
  154. Spicer R (2005) Senescence in secondary xylem: heartwood formation as an active developmental program. In: Holbrook NM, Zwieniecki MA (eds) Vascular transport in plants. Elsevier Academic Press, Burlington, pp 457–475CrossRefGoogle Scholar
  155. Spicer R, Holbrook NM (2007) Parenchyma cell respiration and survival in secondary xylem: does metabolic activity decline with cell age? Plant, Cell Environ 30:934–943CrossRefGoogle Scholar
  156. Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, Coomes DA, Lines ER, Morris WK, Rüger N, Álvarez E, Blundo C, Bunyavejchewin S, Chuyong G, Davies SJ, Duque Á, Ewango CN, Flores O, Franklin JF, Grau HR, Hao Z, Harmon ME, Hubbell SP, Kenfack D, Lin Y, Makana JR, Malizia A, Malizia LR, Pabst RJ, Pongpattananurak N, Su SH, Sun IF, Tan S, Thomas D, van Mantgem PJ, Wang X, Wiser SK, Zavala MA (2014) Rate of tree carbon accumulation increases continuously with tree size. Nature 507:90–93PubMedCrossRefGoogle Scholar
  157. Svenning JC (2001) On the role of microenvironmental heterogeneity in the ecology and diversification of neotropical rain-forest palms (Arecaceae). Bot Rev 67:2–53CrossRefGoogle Scholar
  158. Svenning JC, Borchsenius F, Bjorholm S, Balslev H (2008) High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness. J Biogeogr 35:394–406CrossRefGoogle Scholar
  159. Takenaka A, Takahashi K, Kohyama T (2001) Optimal leaf display and biomass partitioning for efficient light capture in an understorey palm, Licuala arbuscula. Funct Ecol 15:660–668CrossRefGoogle Scholar
  160. Terborgh J (1986) Keystone plant resources in the tropical forest. In: Soulé M (ed) Conservation biology: the science of scarcity and diversity. Sinauer, New York, pp 330–344Google Scholar
  161. Thenkabail PS, Stucky N, Griscom BW, Ashton MS, Diels J, van der Meer B, Enclona E (2004) Biomass estimations and carbon stock calculations in the oil palm plantations of African derived savannas using IKONOS data. Int J Remote Sens 25:5447–5472CrossRefGoogle Scholar
  162. Thomas R, De Franceschi D (2013) Palm stem anatomy and computer-aided identification: The Coryphoideae (Arecaceae). Am J Bot 100:289–313PubMedCrossRefGoogle Scholar
  163. Ter Steege H, Pitman NCA, Sabatier D, Baraloto C, Salomão RP, Guevara JE, Phillips OL, Castilho CV, Magnusson WE, Molino JF, Monteagudo A, Núñez Vargas P, Montero JC, Feldpausch TR, Coronado ENH, Killeen TJ, Mostacedo B, Vasquez R, Assis RL, Terborgh J, Wittmann F, Andrade A, Laurance WF, Laurance SGW, Marimon BS, Marimon Jr BH, Guimarães Vieira IC, Amaral IL, Brienen R, Castellanos H, Cárdenas López D, Duivenvoorden JF, Mogollón HF, de Almeida Matos FD, Dávila N, García-Villacorta R, Stevenson Diaz PR, Costa F, Emilio T, Levis C, Schietti J, Souza P, Alonso A, Dallmeier F, Duque Montoya AJ, Fernandez Piedade MT, Araujo-Murakami A, Arroyo L, Gribel R, Fine PVA, Peres CA, Toledo M, Aymard C. GA, Baker TR, Cerón C, Engel J, Henkel TW, Maas P, Petronelli P, Stropp J, Zartman CE, Daly D, Neill D, Silveira M, Ríos Paredes M, Chave J, de Andrade Lima Filho D, Møller Jørgensen P, Fuentes A, Schöngart J, Cornejo Valverde F, Di Fiore A, Jimenez EM, Peñuela Mora MC, Phillips JF, Rivas G, van Andel TR, von Hildebrand P, Hoffman B, Zent EL, Malhi Y, Prieto A, Rudas A, Ruschell AR, N S, Vos V, Zent S, Oliveira AA, Cano Schutz A, Gonzales T, Nascimento MT, Ramirez-Angulo H, Sierra R, Tirado M, Umaña Medina MN, Van der Heijden G, Vela CIA, Torre EV, Vriesendorp C, Wang O, Young KR, Baider C, Balslev H, Ferreira C, Mesones I, Torres-Lezama A, Urrego Giraldo IH, Milliken W, Palacios Cuenca W, Pauletto D, Sandoval EV, Gamarra LV, Dexter KG, Feeley KJ, Lopez-Gonzalez G, Silman MR (2013) Hyperdominance in the Amazonian tree flora. Science 342. doi: 10.1126/science.1243092 Google Scholar
  164. Tomlinson PB (1961) Anatomy of the Monocotyledons. II. Palmae. Clarendon Press, OxfordGoogle Scholar
  165. Tomlinson PB (1962) The leaf base in palms its morphology and mechanical biology. J Arnold Arboretum 43:23–50Google Scholar
  166. Tomlinson PB (1990) The structural biology of palms. Oxford University Press, OxfordGoogle Scholar
  167. Tomlinson PB (2006) The uniqueness of palms. Bot J Linn Soc 151:5–14CrossRefGoogle Scholar
  168. Tomlinson PB, Huggett B (2012) Cell longevity and sustained primary growth in palm stems. Am J Bot 99:1891–1902PubMedCrossRefGoogle Scholar
  169. Tregear JW, Rival A, Pintaud JC (2011) A family portrait: unravelling the complexities of palms. Ann Bot 108:1387–1389PubMedPubMedCentralCrossRefGoogle Scholar
  170. Tripler E, Ben-Gal A, Shani U (2007) Consequence of salinity and excess boron on growth, evapotranspiration and ion uptake in date palm (Phoenix dactylifera L., cv. Medjool). Plant Soil 297:147–155CrossRefGoogle Scholar
  171. Tripler E, Shani U, Mualem Y, Ben-Gal A (2011) Long term growth, water consumption and yield of date palm as a function of salinity. Agric Water Manage 99:128–134CrossRefGoogle Scholar
  172. Tyree MT, Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytol 119:345–360CrossRefGoogle Scholar
  173. Van Looy T, Carrero GO, Mathijs E, Tollens E (2008) Underutilized agroforestry food products in Amazonas (Venezuela): a market chain analysis. Agrofor Syst 74:127–141CrossRefGoogle Scholar
  174. Van Nieuwstadt MGL, Sheil D (2005) Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indonesia. J Ecol 93:191–201CrossRefGoogle Scholar
  175. Vegas-Vilarrubia T, Baritto F, López P, Meleán G, Ponce ME, Mora L, Gómez O (2010) Tropical histosols of the lower Orinoco Delta, features and preliminary quantification of their carbon storage. Geoderma 155:280–288CrossRefGoogle Scholar
  176. Venceslau Aguiar A, Tabarelli M (2010) Edge effects and seedling bank depletion: The role played by the early successional palm Attalea oleifera (Arecaceae) in the Atlantic forest. Biotropica 42:158–166CrossRefGoogle Scholar
  177. Vormisto J, Svenning JC, Hall P, Balslev H (2004) Diversity and dominance in palm (Arecaceae) communities in terra firme forests in the western Amazon basin. J Ecol 92:577–588CrossRefGoogle Scholar
  178. Walther GR, Gritti ES, Berger S, Hickler T, Tang Z, Sykes MT (2007) Palms tracking climate change. Global Ecol Biogeogr 16:801–809CrossRefGoogle Scholar
  179. Waterhouse JT, Quinn FLS, Quinn CJ (1978) Growth patterns in the stem of the palm Archontophoenix cunninghamiana. Bot J Linn Soc 77:73–93CrossRefGoogle Scholar
  180. Way DA, Oren R (2010) Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol 30:669–688PubMedCrossRefGoogle Scholar
  181. Williams RJ, Cook GD, Gill AM, Moore PHR (1999) Fire regime, fire intensity and tree survival in a tropical savanna in northern Australia. Aust J Ecol 24:50–59CrossRefGoogle Scholar
  182. Winter DF (1993) On the stem curve of a tall palm in a strong wind. SIAM Rev 35:567–579CrossRefGoogle Scholar
  183. Woodruff DR, Bond BJ, Meinzer FC (2004) Does turgor limit growth in tall trees? Plant, Cell Environ 27:229–236CrossRefGoogle Scholar
  184. Wright SJ, Zeballos H, Domínguez I, Gallardo MM, Moreno MC, Ibáñez R (2000) Poachers alter mammal abundance, seed dispersal, and seed predation in a neotropical forest. Conserv Biol 14:227–239CrossRefGoogle Scholar
  185. Zimmerman JK, Everham EM III, Waide RB, Lodge DJ, Taylor CM, Brokaw VL (1994) Responses of tree species to hurricane winds in subtropical wet forest in Puerto Rico: implications for tropical tree life histories. J Ecol 82:911–922CrossRefGoogle Scholar
  186. Zimmermann MH (1973) The monocotyledons: their evolution and comparative biology IV. Transport problems in arborescent monocotyledons. Q Rev Biol 48:314–321CrossRefGoogle Scholar
  187. Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, New YorkCrossRefGoogle Scholar
  188. Zimmermann MH, Sperry JS (1983) Anatomy of the palm Rhapis excelsa, IX. Xylem structure of the leaf insertion. J Arnold Arboretum 64:599–609Google Scholar
  189. Zimmermann MH, Tomlinson PB (1965) Anatomy of the palm Rhapis excelsa I. Mature vegetative axis. J Arnold Arboretum 46:160–181Google Scholar
  190. Zimmermann MH, Tomlinson PB (1972) The vascular system of monocotyledonous stems. Bot Gaz 133:141–155CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of ForestryMississippi State UniversityMississippiUSA
  2. 2.Department of Earth and EnvironmentBoston UniversityBostonUSA

Personalised recommendations