Skip to main content

Facing Shortage or Excessive Light: How Tropical and Subtropical Trees Adjust Their Photosynthetic Behavior and Life History Traits to a Dynamic Forest Environment

  • Chapter
  • First Online:
Tropical Tree Physiology

Part of the book series: Tree Physiology ((TREE,volume 6))

Abstract

Light is critical for plant establishment, growth, and survival in wet tropical forests. The objective of this chapter is to analyze paradigms of photosynthetic performance and life history traits of tropical forest trees to contrasting light environments across the forest floor, gaps and upper canopy. Physiological and morphological plasticity as well as genetically fixed adaptive traits are analyzed, including leaf optical properties and photoprotection from high irradiance. Photosynthetic adaptations to contrasting light environments of closely related species are discussed. This approach has the advantage among comparative studies of adaptations across species in that genetic relationships among species are known. Species-specific variations in maximum photosynthetic rates, which reflect the degree of adaptation to growth irradiance, are shown to be gradual, suggesting that classification into two distinct functional groups in terms of light requirements is somewhat arbitrary. Trees growing in gaps or in the upper canopy rely strongly on biochemical mechanisms to dissipate excess energy and to avoid damage to the light reaction centers and photosystems. Consistent with their high photosynthetic capacity, light demanding species are capable of plastic changes in hydraulic architecture , such as increases in hydraulic conductivity under high irradiance, which makes them more competitive in open habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams WW III, Watson AM, Mueh KE, Amiard V, Turgeon R, Ebbert V, Logan BA, Combs AF, Demmig-Adams B (2007) Photosynthetic acclimation in the context of structural constraints to carbon export from leaves. Photosynth Res 94:455–466

    Article  CAS  PubMed  Google Scholar 

  • Ballaré CL, Scopel AL, Sanchez RA (1997) Foraging for light: photosensory ecology and agricultural implications. Plant Cell Environ 20:820–825

    Article  Google Scholar 

  • Barnes PW, Searles PS, Ballare CL, Ryel RJ, Caldwell MM (2000) Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies. Physiol Plant 109:274–283

    Article  CAS  Google Scholar 

  • Bilger W, Björkman O (1990) Role of xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbency changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    Article  CAS  PubMed  Google Scholar 

  • Björkman O, Ludlow M (1972) Characterization of the light climate on the floor of a Queensland rainforest. Carnegie Inst Wash Yearb 71:85–91

    Google Scholar 

  • Bormann FH, Likens GE (1979) Pattern and process in a forested ecosystem. Springer-Verlag, New York, USA

    Book  Google Scholar 

  • Brokaw NVL (1985) Gap-phase regeneration in a tropical forest. Ecology 66:682–687

    Article  Google Scholar 

  • Campanello PI, Gatti MG, Ares A, Montti L, Goldstein G (2007) Tree regeneration and microclimate in a liana and bamboo-dominated semideciduous Atlantic Forest. For Ecol Manage 252:108–117

    Article  Google Scholar 

  • Campanello PI, Gatti MG, Goldstein G (2008) Coordination between water-transport efficiency and photosynthetic capacity in canopy tree species at different growth irradiances. Tree Physiol 28:85–94

    Google Scholar 

  • Campanello PI, Gatti MG, Ares A, Montti L, Villara M, Goldstein G (2011) Ser o no ser tolerante a la sombra: economía de agua y carbono en especies arbóreas del Bosque Atlántico (Misiones, Argentina). Ecología Austral 21:285–300

    Google Scholar 

  • Canham CD, Denslow JS, Platt WJ, Runkle JR, Spies TA, White PS (1990) Light regimes beneath closed canopies and tree fall gaps in temperate and tropical forests. Can J Forest Res-Rev Can Rech Forestiere 20:620–631

    Article  Google Scholar 

  • Chazdon RL (1988) Sunflecks and their importance to forest understory plants. Adv Ecol Res 18:1–63

    Article  Google Scholar 

  • Chazdon RL, Fetcher N (1984) Light environments of tropical forests. In: Medina E, Mooney HA, Vázquez-Yanes C (eds) Physiological Ecology of Plants of the Wet Tropics. Dr. W Junk Publishers, The Hague, pp 553–564

    Google Scholar 

  • Chazdon RL, Pearcy RW (1986) Photosynthetic responses to light variation in rainforest species. II. Carbon gain and photosynthetic efficiency during lightflecks. Oecologia 69:524–531

    Article  Google Scholar 

  • Clark DA, Clark DB (1992) Life history diversity of canopy and emergent trees in a neotropical rain forest. Ecol Monogr 62:315–344

    Article  Google Scholar 

  • Demmig-Adams B (1998) Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant Cell Physiol 39:474–482

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21

    Article  CAS  PubMed  Google Scholar 

  • Denslow JS (1980) Gap partitioning among tropical rainforest trees. Biotropica 12:47–55

    Article  Google Scholar 

  • Ellis AR, Hubbell SP, Potvin C (2000) In situ field measurements of photosynthetic rates of tropical tree species: a test of the functional group hypothesis. Can J Bot-Rev Can Botanique 78:1336–1347

    Article  Google Scholar 

  • Feild TS, Lee DW, Holbrook NM (2001) Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiol 127:566–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fetene M, Nauke P, Lüttge U, Beck E (1997) Photosynthesis and photoinhibition in a tropical alpine giant rosette plant, Lobelia rhynchopetalum. New Phytol 137:453–461

    Article  CAS  Google Scholar 

  • Gilbert B, Wright SJ, Muller-Landau HC, Kitajima K, Hernández A (2006) Life history trade-offs in tropical trees and lianas. Ecology 87:1281–1288

    Article  PubMed  Google Scholar 

  • Givnish TJ (1988) Adaptation to sun and shade: A whole-plant perspective. Aust J Plant Physiol 15:63–92

    Article  Google Scholar 

  • Givnish TJ, Montgomery RA, Goldstein G (2004) Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and whole-plant compensation points. Am J Bot 91:228–246

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Pompa A, Vázquez-Yanes C (1981) Successional studies of a rain forest in Mexico. In: Forest Succession. Springer, pp 246–266

    Google Scholar 

  • Gould KS (2004) Nature’s Swiss army knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotechnol:314–320

    Google Scholar 

  • Gould KS, Vogelmann TC, Han T, Clearwater MJ (2002) Profiles of photosynthesis within red and green leaves of Quintinia serrata. Physiol Plant 116:127–133

    Article  CAS  PubMed  Google Scholar 

  • Graham EA, Mulkey SS, Kitajima K, Phillips NG, Wright SJ (2003) Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons. Proc Natl Acad Sci USA 100:572–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forests: an architectural analysis. Springer Science and Business Media, 2012. Springer-Verlag, Berlin

    Google Scholar 

  • Harborne JB (1988) The flavonoids: recent advances

    Google Scholar 

  • Hartshorn GS (1978) Treefalls and tropical forest dynamics. In: Tomlinson PB, Zimmerman MH (eds) Tropical Trees as Living Systems. Cambridge University Press, Cambridge, England, pp 617–683

    Google Scholar 

  • Huang W, Zhang S-B, Cao K-F (2012) Evidence for leaf fold to remedy the deficiency of physiological photoprotection for photosystem II. Photosynth Res 110:185–191

    Article  CAS  PubMed  Google Scholar 

  • Hubbell SP, Foster RB, O’Brien ST, Harms KE, Condit R, Wechsler B, Wright SJ, de Lao SL (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283:554–557

    Article  CAS  PubMed  Google Scholar 

  • Hughes NM, Smith WK (2007) Attenuation of incident light in Galax urceolata (Diapensiaceae): Concerted influence of adaxial and abaxial anthocyanic layers on photoprotection. Am J Bot 94:784–790

    Article  CAS  PubMed  Google Scholar 

  • Hughes NM, Neufeld HS, Burkey KO (2005) Functional role of anthocyanins in high-light winter leaves of the evergreen herb Galax urceolata. New Phytol 168:575–587

    Article  CAS  PubMed  Google Scholar 

  • Ishida A, Toma T, Marjenah (1999) Limitation of leaf carbon gain by stomatal and photochemical processes in the top canopy of Macaranga conifera, a tropical pioneer tree. Tree Physiol 19:467–473

    Google Scholar 

  • Johnson GN, Young AJ, Scholes JD, Horton P (1993) The dissipation of excess excitation energy in Brittish plant species. Plant Cell Environ 16:673–679

    Article  CAS  Google Scholar 

  • Kamaluddin M, Grace J (1992) Photoinhibition and light acclimation in seedlings of Bischofia javanica, a tropical forest tree from Asia. Ann Bot 69:47–52

    Google Scholar 

  • King DA (1991) Correlations between biomass allocation, relative growth rate and light environment in tropical forest saplings. Funct Ecol 5:485–492

    Article  Google Scholar 

  • Kitajima K (1994) Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98:419–428

    Article  Google Scholar 

  • Kitajima K (1996) Ecophysiology of tropical tree seedlings. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Chapman and Hall, New York, pp 559–596

    Chapter  Google Scholar 

  • Kohyama T, Hotta M (1990) Significance of allometry in tropical saplings. Funct Ecol 4:515–521

    Article  Google Scholar 

  • Kornyeyev D, Logan BA, Tissue DT, Allen RD, Holaday AS (2006) Compensation for PSII photoinactivation by regulated non-photochemical dissipation influences the impact of photoinactivation on electron transport and CO2 assimilation. Plant Cell Physiol 47:437–446

    Article  CAS  PubMed  Google Scholar 

  • Krause GH (1988) Photoinhibition of photosynthesis: an evaluation of damaging and protective mechanisms. Physiol Plant 74:566–574

    Article  CAS  Google Scholar 

  • Krause GH, Virgo A, Winter K (1995) High susceptibility to photoinhibition of young leaves of tropical forest trees. Planta 197:583–591

    Article  CAS  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (1998) Plant Physiological Ecology. Springer-Verlag, New York

    Book  Google Scholar 

  • Lee DW (1986) Unusual strategies of light absorption in rainforest herbs. In: Givnish TJ (ed) The Economics of Plant Form and Function. Cambridge University Press, Cambridge, UK, pp 105–131

    Google Scholar 

  • Lee DW (1987) The spectral distribution of radiation in 2 neotropical rainforests. Biotropica 19:161–166

    Article  Google Scholar 

  • Lee HY, Chow WS, Hong YN (1999) Photoinactivation of photosystem II in leaves of Capsicum annuum. Physiol Plant 105:377–384

    Article  CAS  Google Scholar 

  • Lei TT, Lechowicz MJ (1997) The photosynthetic response of eight species of Acer to simulated light regimes from the centre and edges of gaps. Funct Ecol 11:16–23

    Article  Google Scholar 

  • Lüttge U (2008) Physiological Ecology of Tropical Plants, 2nd edn. Springer-Verlag, Berlin

    Google Scholar 

  • Martinez-Ramos M, Alvarez-Buylla E, Sarukhan J, Piñero D (1988) Treefall age determination and gap dynamics in a tropical forest. J Ecol 76:700–716

    Article  Google Scholar 

  • Meinzer FC, Goldstein G, Jackson P, Holbrook NM, Gutiérrez MV, Cavelier J (1995) Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic conductance properties. Oecologia 101:514–522

    Article  Google Scholar 

  • Montgomery RA, Givnish TJ (2008) Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: dynamic photosynthetic responses. Oecologia 155:455–467

    Article  PubMed  Google Scholar 

  • Nicotra AB, Chazdon RL, Iriarte SVB (1999) Spatial heterogeneity of light and woody seedling regeneration in tropical wet forests. Ecology 80:1908–1926

    Article  Google Scholar 

  • Oberbauer SF, Starr G (2002) The role of anthocyanins for photosynthesis of Alaskan arctic evergreens during snowmelt. In: Gould KS, Lee DW (eds) Anthocyanins in leaves. advances in botanical research, vol 37. Academic Press, New York, pp 129–145

    Google Scholar 

  • Oldeman RAA (1978) Architecture and energy exchange of dicotyledonous trees in the forest. In: Tomlinson PB, Zimmerman MH (eds) Tropical Trees as Living Systems. Cambridge University Press, Cambridge, England, pp 535–560

    Google Scholar 

  • Osunkoya OO, Ash JE (1991) Acclimination to a change in light regime in seedlings of 6 Australian rainforest tree species. Aust J Bot 39:591–605

    Article  Google Scholar 

  • Pearcy RW (1987) Photosynthetic gas exchange responses of Australian tropical forest trees in canopy, gap and understory micro-environments. Funct Ecol 1:169–178

    Article  Google Scholar 

  • Poorter L, Kwant R, Hernandez R, Medina E, Werger MJA (2000) Leaf optical properties in Venezuelan cloud forest trees. Tree Physiol 20:519–526

    Article  CAS  PubMed  Google Scholar 

  • Popma J, Bongers F (1988) The Effect of canopy gaps on growth and morphology of seedlings of rain forest species. Oecologia 75:625–632

    Article  Google Scholar 

  • Robichaux RH, Pearcy RW (1980) Environmental characteristics, field water relations, and photosynthetic responses of C4 Hawaiian Euphorbia species from contrasting habitats. Oecologia 47:99–105

    Article  Google Scholar 

  • Robichaux RH, Pearcy RW (1984) Evolution of C3 and C4 plants along an environmental moisture gradient: Patterns of photosynthetic differentiation in Hawaiian Scaevola and Euphorbia species. Am J Bot 71:121–129

    Article  Google Scholar 

  • Runkle JR (1981) Gap regeneration in some old growth forests of the eastern United States. Ecology 62:1041–1051

    Article  Google Scholar 

  • Santiago LS (2010) Can growth form classification predict litter nutrient dynamics and decomposition rates in lowland wet forest? Biotropica 42:72–79

    Article  Google Scholar 

  • Santiago LS, Dawson TE (2014) Light-use efficiency of California redwood forest understory plants along a moisture gradient. Oecologia 174:351–363

    Article  PubMed  Google Scholar 

  • Santiago LS, Kim S-C (2009) Correlated evolution of leaf shape and physiology in the woody Sonchus alliance (Asteraceae: Sonchinae) in Macaronesia. Int J Plant Sci 170:83–92

    Article  Google Scholar 

  • Santiago LS, Wright SJ (2007) Leaf functional traits of tropical forest plants in relation to growth form. Funct Ecol 21:19–27

    Article  Google Scholar 

  • Santiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, Woodruff D, Jones T (2004) Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia 140:543–550

    Article  CAS  PubMed  Google Scholar 

  • Sassenrath-Cole GF, Pearcy RW, Steinmaus S (1994) The role of enzyme activation state in limiting carbon assimilation under variable light conditions. Photosynth Res 41:295–302

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer SA, Dalling JW, Carson WP (2000) The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration. J Ecol 88:655–666

    Article  Google Scholar 

  • Sharkey TD, Seemann JR, Pearcy RW (1986) Contribution of metabolites of photosynthesis to postillumination CO2 assimilation in response to lightflecks. Plant Physiol 82:1063–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smillie RM, Hetherington SE (1999) Photoabatement by anthocyanin shields photosynthetic systems from light stress. Photosynthetica 36:451–463

    Article  CAS  Google Scholar 

  • Tenhunen JD, Pearcy RW, Lange OL (1987) Diurnal variations in leaf conductance and gas exchange in natural environments. In: Zeiger E, Farquhar GD, Cowan IR (eds) Stomatal Function. University Press, Stanford, USA, Stanford, pp 323–351

    Google Scholar 

  • Valladares F (1999) Architecture, ecology, and evolution of plant crowns. Handbook of Functional Plant Ecology. Marcel Dekker, New York, pp 121–194

    Google Scholar 

  • Valladares F, Allen MT, Pearcy RW (1997) Photosynthetic responses to dynamic light under field conditions in six tropical rainforest shrubs occurring along a light gradient. Oecologia 111:505–514

    Article  Google Scholar 

  • Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW (2000) Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology 81:1925–1936

    Article  Google Scholar 

  • Villagra M (2012) Plasticidad morfológica y fisiológica de especies arbóreas del Bosque Atlántico en respuesta a la disponibilidad de luz y nutrientes. In: Facultad de Ciencias Exactas y Naturales, vol. PhD. Universidad de Buenos Aires, Argentina

    Google Scholar 

  • Vitousek PM, Denslow JS (1986) Nitrogen and Phosphorus Availability in Treefall Gaps of a Lowland Tropical Rain-Forest. J Ecol 74:1167–1178

    Article  Google Scholar 

  • Vogelmann TC, Nishio JN, Smith WK (1996) Leaves and light capture: Light propagation and gradients of carbon fixation within leaves. Trends Plant Sci 1:65–70

    Article  Google Scholar 

  • Watt AS (1947) Pattern and process in the plant community. J Ecol 35:1–22

    Article  Google Scholar 

  • Whitmore TC (1975) Tropical rainforests of the Far East. Clarendon, Oxford, England

    Google Scholar 

  • Wright SJ, vanSchaik CP (1994) Light and the phenology of tropical trees. Am Nat 143:192–199

    Article  Google Scholar 

  • Wright SJ, Kitajima K, Kraft NJB, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Diaz S, Engelbrecht BMJ, Harms KE, Hubbell SP, Marks CO, Ruiz-Jaen MC, Salvador CM, Zanne AE (2010) Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91:3664–3674

    Article  PubMed  Google Scholar 

  • Zalamea P-C, Stevenson PR, Madrinan S, Aubert P-M, Heuret P (2008) Growth pattern and age determination for Cecropia sciadophylla (Urticaceae). Am J Bot 95:263–271

    Article  PubMed  Google Scholar 

  • Zalamea P-C, Heuret P, Sarmiento C, Rodriguez M, Berthouly A, Guitet S, Nicolini E, Delnatte C, Barthelemy D, Stevenson PR (2012) The Genus Cecropia: A Biological Clock to Estimate the Age of Recently Disturbed Areas in the Neotropics. Plos One 7

    Google Scholar 

  • Zhang JL, Meng LZ, Cao KF (2009) Sustained diurnal photosynthetic depression in uppermost-canopy leaves of four dipterocarp species in the rainy and dry seasons: does photorespiration play a role in photoprotection? Tree Physiol 29:217–228

    Article  PubMed  Google Scholar 

  • Zhang Y-J, Meinzer FC, Qi J-H, Goldstein G, Cao K-F (2013a) Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees. Plant Cell Environ 36:149–158

    Article  PubMed  Google Scholar 

  • Zhang Y-J, Yang Q-Y, Lee DW, Goldstein G, Cao K-F (2013b) Extended leaf senescence promotes carbon gain and nutrient resorption: importance of maintaining winter photosynthesis in subtropical forests. Oecologia 173:721–730

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Goldstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Goldstein, G., Santiago, L.S., Campanello, P.I., Avalos, G., Zhang, YJ., Villagra, M. (2016). Facing Shortage or Excessive Light: How Tropical and Subtropical Trees Adjust Their Photosynthetic Behavior and Life History Traits to a Dynamic Forest Environment. In: Goldstein, G., Santiago, L. (eds) Tropical Tree Physiology. Tree Physiology, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-27422-5_15

Download citation

Publish with us

Policies and ethics