Skip to main content

Tree Nutrient Status and Nutrient Cycling in Tropical Forest—Lessons from Fertilization Experiments

Part of the Tree Physiology book series (TREE,volume 6)

Abstract

Highly productive tropical forests often occur on nutrient-poor soils . The apparent lack of a relationship between tree growth and site fertility has generated decades of research into which nutrients, if any, limit tropical forest productivity. This chapter looks at the lessons we have learned from several decades of fertilization experiments, which investigate nutrient limitation by measuring changes in growth and productivity in response to the addition of specific nutrients. The enormous diversity of tropical forest ecosystems often confounds attempts to measure a clear ecosystem response to fertilization because tree species’ nutrient requirements differ according to life history strategy , adaptation to site fertility, and the life stage of the individuals under study. Importantly, other limiting resources, such as light and water, constrain individual responses to nutrient availability, whereas species interactions such as competition, herbivory , and symbioses can mask growth responses to nutrient amendments. Finally, fertilization changes the timing and balance of nutrient inputs to the forest, whereas litter manipulation studies demonstrate that the combined addition of many different nutrients and organic carbon minimizes nutrient losses. Most fertilization studies have investigated responses to nitrogen and phosphorus additions but there is still no general consensus on nutrient limitation in tropical forests. Future experiments will need to evaluate how the balance of multiple macro- and micronutrients affects tropical forest growth and ecosystem dynamics.

Keywords

  • Belowground biomass
  • Ecosystem productivity
  • Life history strategy
  • Nitrogen fixation
  • Nutrient limitation
  • Soil chronosequence
  • Tree growth

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-27422-5_13
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-27422-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Adamek M, Corre M, Hölscher D (2009) Early effect of elevated nitrogen input on aboveground net primary production of a tropical lower montane rain forest, Panama. J Trop Ecol 25:637–647

    CrossRef  Google Scholar 

  • Alvarez-Clare S, Mack MC, Brooks M (2013) A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology 94:1540–1551

    CAS  PubMed  CrossRef  Google Scholar 

  • Andersen K, Corre M, Turner BL, Dalling JW (2010) Plant-soil associations in lower montane tropical forest: physiological acclimation and herbivore-mediated responses to nitrogen addition. Funct Ecol 24:1171–1180

    CrossRef  Google Scholar 

  • Attiwill PM, Adams MA (1993) Nutrient cycling in forests. New Phytol 124:561–582

    CAS  CrossRef  Google Scholar 

  • Banin LF, Phillips OL, Lewis SL (2015) Tropical Forests. In: Peh KS-H, Corlett RT, Bergeron Y (eds) Routledge handbook of forest ecology. Routledge

    Google Scholar 

  • Baribault TW, Kobe RK, Finley AO (2012) Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes. Ecol Monogr 82:189–203

    CrossRef  Google Scholar 

  • Batterman SA, Wurzburger N, Hedin LO (2013) Nitrogen and phosphorus interact to control tropical symbiotic N2 fixation: a test in Inga punctata. J Ecol 101:1400–1408

    CAS  CrossRef  Google Scholar 

  • Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants—an economic analogy. Ann Rev Ecol Syst 16:363–392

    CrossRef  Google Scholar 

  • Brearley FQ, Press MC, Scholes JD (2003) Nutrients obtained from leaf litter can improve the growth of dipterocarp seedlings. New Phytol 160:101–110

    CAS  CrossRef  Google Scholar 

  • Brearley FQ, Scholes JD, Press MC, Palfner G (2007) How does light and phosphorus fertilisation affect the growth and ectomycorrhizal community of two contrasting dipterocarp species? Plant Ecol 192:237–249

    CrossRef  Google Scholar 

  • Bruijnzeel LA (1991) Nutrient input-output budgets of tropical forest ecosystems: a review. J Trop Ecol 7:1–24

    CrossRef  Google Scholar 

  • Burslem DFRP, Grubb PJ, Turner IM (1996) Responses to simulated drought and elevated nutrient supply among shade-tolerant tree seedlings of lowland tropical forest in Singapore. Biotropica 28:636–648

    CrossRef  Google Scholar 

  • Burslem DFRP, Grubb PJ, Turner IM (1995) Responses to nutrient addition among shade-tolerant tree seedlings of lowland tropical rain-forest in Singapore. J Ecol 83:113–122

    CrossRef  Google Scholar 

  • Cai ZQ, Poorter L, Han Q, Bongers F (2008) Effects of light and nutrients on seedlings of tropical Bauhinia lianas and trees. Tree Physiol 28:1277–1285

    Google Scholar 

  • Campo J, Dirzo R (2003) Leaf quality and herbivory responses to soil nutrient addition in secondary tropical dry forests of Yucatan, Mexico. J Trop Ecol 19:525–530

    CrossRef  Google Scholar 

  • Campo J, Vazquez-Yanes C (2004) Effects of nutrient limitation on aboveground carbon dynamics during tropical dry forest regeneration in Yucatán, Mexico. Ecosystems 7:311–319

    CAS  CrossRef  Google Scholar 

  • Cavelier J, Tanner EVJ, Santamaría J (2000) Effect of water, temperature and fertilizers on soil nitrogen net transformations and tree growth in an elfin cloud forest of Colombia. J Trop Ecol 16:83–99

    CrossRef  Google Scholar 

  • Cernusak LA, Winter K, Turner BL (2010) Leaf nitrogen to phosphorus ratios of tropical trees: experimental assessment of physiological and environmental controls. New Phytol 185:770–779

    CAS  PubMed  CrossRef  Google Scholar 

  • Chapin FS (1980) The mineral nutrition of wild plants. Ann Rev Ecol Syst 11:233–260

    CAS  CrossRef  Google Scholar 

  • Chapin FS, Vitousek PM, van Cleve K (1986) The nature of nutrient limitation in plant communities. Am Nat 127:48–58

    CrossRef  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defences in tropical forests. Ann Rev Ecol Syst 27:305–335

    CrossRef  Google Scholar 

  • Cordell S, Goldstein G, Meinzer FC, Vitousek PM (2001) Morphological and physiological adjustment to N and P fertilization in nutrient-limited Metrosideros polymorpha canopy trees in Hawaii. Tree Physiol 21:43–50

    CAS  PubMed  CrossRef  Google Scholar 

  • Cornforth IS (1968) Relationship between soil volume used by roots and nutrient accessibility. J Soil Sci 19:291–301

    CAS  CrossRef  Google Scholar 

  • Corre MD, Veldkamp E, Arnold J, Wright SJ (2010) Impact of elevated N input on soil N cycling and losses in old-growth lowland and montane forests in Panama. Ecology 91:1715–1729

    PubMed  CrossRef  Google Scholar 

  • Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM (1995) Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76:1407–1424

    CrossRef  Google Scholar 

  • Cuevas E, Medina E (1988) Nutrient dynamics within Amazonian forests. II fine root growth, nutrient availability and leaf litter decomposition. Oecologia 76:222–235

    CrossRef  Google Scholar 

  • Dalling JW, Tanner EVJ (1995) An experimental study of regeneration on landslides in montane rain forest in Jamaica. J Ecol 83:55–64

    CrossRef  Google Scholar 

  • Davidson EA, Carvalho CJR, Vieira ICG, Figueiredo RD, Moutinho P, Ishida FY, dos Santos MTP, Guerrero JB, Kalif K, Saba RT (2004) Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol Appl 14:150–163

    CrossRef  Google Scholar 

  • Denslow JS, Vitousek PM, Schultz JC (1987) Bioassays of nutrient limitation in a tropical rain forest soil. Oecologia 74:370–376

    CrossRef  Google Scholar 

  • Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW (2000) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550

    CrossRef  Google Scholar 

  • Epron D, Laclau J-P, Almeida JCR, Gonçalves JLM, Ponton S, Sette CR Jr, Delgado-Rojas JS, Bouillet J-P, Nouvellon Y (2011) Do changes in carbon allocation account for the growth response to potassium and sodium applications in tropical Eucalyptus plantations? Tree Physiol 32:667–679

    PubMed  CrossRef  CAS  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19

    Google Scholar 

  • Fetcher N, Haines BL, Cordero RA, Lodge DJ, Walker LR, Fernandez DS, Lawrence WT (1996) Responses of tropical plants to nutrients and light on a landslide in Puerto Rico. J Ecol 84:331–341

    CrossRef  Google Scholar 

  • Fisher JB, Malhi Y, Torres IC, Metcalfe DB, van de Weg MJ, Meir P, Silva-Espejo JE, Huaranca Hasce W (2013) Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia 172:889–902

    PubMed  CrossRef  Google Scholar 

  • Goldstein G, Bucci, SJ, Scholz FG (2013) Why do trees adjust water relations and hydraulic architecture in response to nutrient availability? Tree Physiol 33:238–240

    Google Scholar 

  • Giardina CP, Ryan MG, Binkley D, Fownes JH (2003) Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest. Glob Change Biol 9:1438–1450

    CrossRef  Google Scholar 

  • Gower ST (1987) Relations between mineral nutrient availability and fine root biomass in two Costa Rican tropical wet forests: a hypothesis. Biotropica 19:171–175

    CrossRef  Google Scholar 

  • Graefe S, Hertel D, Leuschner C (2010) N, P and K limitation of fine root growth along an elevation transect in tropical mountain forests. Acta Oecol 36:537–542

    CrossRef  Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes and ecosystem properties, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Grubb PJ (1977) Control of forest growth and distribution on wet tropical mountains—with special reference to mineral nutrition. Ann Rev Ecol Syst 8:83–107

    CAS  CrossRef  Google Scholar 

  • Grubb PJ (1989) The role of mineral nutrients in the tropics: a plant ecologist´s view. In: Proctor J (ed) Mineral nutrients in tropical forest and savanna ecosystems. Blackwell, Oxford

    Google Scholar 

  • Gunatilleke CVS, Gunatilleke IAUN, Perera GAD, Burslem DFRP, Ashton PMS, Ashton PS (1997) Responses to nutrient addition among seedlings of eight closely related species of Shorea in Sri Lanka’. J Ecol 85:301–311

    Google Scholar 

  • Gutschick VP (1981) Evolved strategies in nitrogen acquisition by plants. Am Nat 118:607–637

    CAS  CrossRef  Google Scholar 

  • Hall SJ, Matson PA (2003) Nutrient status of tropical rain forests influences soil N dynamics after N additions. Ecol Monogr 73:107–129

    CrossRef  Google Scholar 

  • Hall JS, Ashton MS, Berlyn GP (2003) Seedling performance of four sympatric Entandrophragma species (Meliaceae) under simulated fertility and moisture regimes of central African rain forest. J Trop Ecol 19:55–66

    Google Scholar 

  • Harrington RA, Fownes JH, Vitousek PM (2001) Production and resource-use efficiencies in N- and P- limited tropical forests: a comparison of responses to long-term fertilization. Ecosystems 4:646–657

    CAS  CrossRef  Google Scholar 

  • Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156

    CrossRef  Google Scholar 

  • Hedin LO, Brookshire ENJ, Menge D, Barron AR (2009) The nitrogen paradox in tropical forest ecosystems. Ann Rev Ecol Syst 40:613–635

    CrossRef  Google Scholar 

  • Herrera R, Merida T, Stark NM, Jordan CF (1978) Direct phosphorus transfer from leaf litter to roots. Naturwissenschaften 65:208–209

    CAS  CrossRef  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    CAS  PubMed  CrossRef  Google Scholar 

  • Högberg P (1986) Soil nutrient availability, root symbioses and tree species composition in tropical Africa: a review. J Trop Ecol 2:359–372

    CrossRef  Google Scholar 

  • Homeier J, Hertel D, Camenzind T, Cumbicus NL, Maraun M, Martinson GO, Nohemy Poma L, Rillig MC, Sandmann D, Scheu S, Veldkamp E, Wilcke W, Wullaert H, Leuschner C (2012) Tropical Andean forests are highly susceptible to nutrient inputs—rapid effects of experimental N and P addition to an Ecuadorian montane forest. PLoS ONE 7:e47128

    Google Scholar 

  • Houlton BZ, Wang Y-P, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–330

    CAS  PubMed  CrossRef  Google Scholar 

  • Huante P, Rincon E, Chapin FS (1995) Responses to phosphorus of contrasting successional tree-seedling species from the tropical deciduous forest of Mexico. Funct Ecol 9:760–766

    CrossRef  Google Scholar 

  • Jordan CF (1985) Nutrient cycling in tropical forest ecosystems. Wiley, Chichester

    Google Scholar 

  • Jordan CF, Herrera R (1981) Tropical rain forests—are nutrients really critical? Am Nat 117:167–180

    CAS  CrossRef  Google Scholar 

  • Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB (2008) Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol Lett 11:35–43

    PubMed  Google Scholar 

  • Koehler B, Corre MD, Veldkamp E, Wullaert H, Wright SJ (2009) Immediate and long-term nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen input. Glob Change Biol 15:2049–2066

    CrossRef  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    PubMed  CrossRef  Google Scholar 

  • Lawrence D (2003) The response of tropical tree seedlings to nutrient supply: meta-analysis for understanding a changing tropical landscape. J Trop Ecol 19:239–250

    CrossRef  Google Scholar 

  • Lodge DJ, McDowell WH, McSwiney CP (1994) The importance of nutrient pulses in tropical forests. Trends Ecol Evol 9:384–387

    CAS  PubMed  CrossRef  Google Scholar 

  • Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010) Stoichiometric controls dynamics of carbon, nitrogen, and phosphorus in decomposing litter. Ecol Monogr 80:89–106

    CrossRef  Google Scholar 

  • Matzek V, Vitousek PM (2009) N: P stoichiometry and protein: RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis. Ecol Lett 12:765–771

    PubMed  CrossRef  Google Scholar 

  • Mayor JR, Wright SJ, Turner BL (2013) Data from: Species-specific responses of foliar nutrients to long-term nitrogen and phosphorus additions in a lowland tropical forest. Dryad Digital Repository. doi:10.5061/dryad.257b9

    Google Scholar 

  • Mayor JR, Wright SJ, Turner BL (2014) Species-specific responses of foliar nutrients to long-term nitrogen and phosphorus additions in a lowland tropical forest. J Ecol 103:36–44

    CrossRef  CAS  Google Scholar 

  • McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P: stoichiometry in forest ecosystems worldwide: implications of terrestrial Redfield-type ratios. Ecology 85:2390–2401

    CrossRef  Google Scholar 

  • Miller HG (1981) Forest fertilization: some guiding concepts. Forestry 54:157–167

    CrossRef  Google Scholar 

  • Mirmanto E, Proctor J, Green J, Nagy L, Suriantata (1999) Effects of nitrogen and phosphorus fertilization in lowland evergreen rainforest. Phil Trans Roy Soc B 354:1825–1829

    Google Scholar 

  • Mo J, Zhang W, Zhu W, Gundersen P, Fang Y, Li D, Wang H (2008) Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Glob Change Biol 14:403–412

    CrossRef  Google Scholar 

  • Newbery DM, Chuyong GB, Green JJ, Songwe NC, Tchuenteu F, Zimmermann L (2002) Does low phosphorus supply limit seedling establishment and tree growth in groves of ectomycorrhizal trees in a central African rainforest? New Phytol 156:297–311

    CrossRef  Google Scholar 

  • Ostertag R (2001) Effects of nitrogen and phosphorus availability on fine-root dynamics in Hawaiian montane forests. Ecology 82:485–499

    CrossRef  Google Scholar 

  • Ostertag R (2010) Foliar nitrogen and phosphorus accumulation responses after fertilization: an example from nutrient-limited Hawaiian forests. Plant Soil 334:85–98

    CAS  CrossRef  Google Scholar 

  • Pasquini SC, Santiago LS (2012) Nutrients limit photosynthesis in seedlings of a lowland tropical forest tree species. Oecologia 168:311–319

    CAS  PubMed  CrossRef  Google Scholar 

  • Paoli GD, Curran LM, Slik JWF (2008) Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 155:287–299

    PubMed  CrossRef  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-plus. Springer, New York

    CrossRef  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Core Team R (2015) nlme: linear and nonlinear mixed effects models. R package version 3:1–122

    Google Scholar 

  • Proctor J (1983) Mineral nutrients in tropical forests. Prog Phys Geog 7:422–431

    CrossRef  Google Scholar 

  • Qualls RG, Haines BL, Swank WT (1991) Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology 72:254–266

    CrossRef  Google Scholar 

  • Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, Patino S, Fyllas NM, Hodnett MG, Herrera R, Almeida S, Davila EA, Arneth A, Arroyo L, Chao KJ, Dezzeo N, Erwin T, Fiore A, Higuchi N, Coronado EH, Jimenez EM, Killeen T, Lezama AT, Lloyd G, Lopez-Gonzalez G, Luizao FJ, Malhi Y, Monteagudo A, Neill DA, Vargas PN, Paiva R, Peacock J, Penuela MC, Cruz AP, Pitman N, Priante N, Prieto A, Ramirez H, Rudas A, Salomao R, Santos AJB, Schmerler J, Silva N, Silveira M, Vasquez R, Vieira I, Terborgh J, Lloyd J (2012) Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9:2203–2246

    CrossRef  Google Scholar 

  • Development Core Team R (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Raaimakers D, Lambers H (1996) Response to phosphorus supply of tropical tree seedlings: a comparison between a pioneer species Tabirira obtusa and a climax species Lecythis corrugata. New Phytol 132:97–102

    CrossRef  Google Scholar 

  • Raich JW, Riley RH, Vitousek PM (1994) Use of root-ingrowth cores to assess nutrient limitations in forest ecosystems. Can J For Res 24:2135–2138

    CrossRef  Google Scholar 

  • Russo SE, Davies SJ, King DA, Tan S (2005) Soil-related performance variation and distributions of tree species in a Bornean rain forest. J Ecol 93:879–889

    CAS  CrossRef  Google Scholar 

  • Santiago LS, Wright SJ, Harms KE, Yavitt JB, Korine C, Garcia MN, Turner BL (2012) Tropical tree seedling growth responses to nitrogen phosphorus and potassium addition. J Ecol 100:309–316

    CAS  CrossRef  Google Scholar 

  • Sayer EJ, Tanner EVJ (2010) Experimental investigation of the importance of litterfall in lowland semi-evergreen tropical forest nutrient cycling. J Ecol 98:1052–1062

    CrossRef  Google Scholar 

  • Sayer EJ (2006) Using experimental litter manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev 81:1–31

    PubMed  CrossRef  Google Scholar 

  • Sayer EJ, Tanner EVT, Wright SJ, Yavitt JB, Harms KE, Powers JS, Kaspari M, Garcia MN, Turner BL (2012) Comparative assessment of lowland tropical forest nutrient status in response to fertilization and litter manipulation. Ecosystems 15:387–400

    CAS  CrossRef  Google Scholar 

  • Schreeg LA, Mach MC, Turner BL (2013) Leaf litter inputs decrease phosphate sorption in a strongly weathered tropical soil over two time scales. Biogeochem 113:507–524

    CAS  CrossRef  Google Scholar 

  • Sobrado MA (2013) Soil and leaf micronutrient composition in contrasting habitats in podzolized sands of the Amazon region. Am J Plant Sci 4:1918–1923

    CrossRef  CAS  Google Scholar 

  • St. John TV (1982) Response of tree roots to decomposing organic matter in two lowland Amazonian rain forests. Can J For Res 13:346–349

    Google Scholar 

  • Stark NM, Jordan CF (1978) Nutrient retention by the root mat of an Amazonian rain forest. Ecology 59:434–437

    CAS  CrossRef  Google Scholar 

  • Stewart CG (2000) A test of nutrient limitation in two tropical montane forests using ingrowth cores. Biotropica 32:369–373

    CrossRef  Google Scholar 

  • Tanner EVJ, Barberis IM (2007) Trenching increased growth, and irrigation increased survival of tree seedlings in the understorey of a semi-evergreen rain forest in Panama. J Trop Ecol 23:257–268

    CrossRef  Google Scholar 

  • Tanner EVJ, Vitousek PM, Cuevas E (1998) Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:10–22

    CrossRef  Google Scholar 

  • Treseder KK, Vitousek PM (2001) Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology 82:946–954

    CrossRef  Google Scholar 

  • Tripathi SN, Raghubanshi AS (2014) Seedling growth of five tropical dry forest species in relation to light and nitrogen gradients. J Plant Ecol 7:250–263

    CrossRef  Google Scholar 

  • Turner IM, Brown ND, Newton AC (1993) The effect of fertilizer application on dipterocarp seedling growth and mycorrhizal infection. For Ecol Manage 57:329–337

    CrossRef  Google Scholar 

  • Tutua SS, Xu ZH, Blumfield TJ, Bubb KA (2008) Long-term impacts of harvest residue management on nutrition, growth and productivity of an exotic pine plantation of sub-tropical Australia. For Ecol Manage 256:741–748

    CrossRef  Google Scholar 

  • Vasconcelos SS, Zarin DJ, Machado Araújo M, Rangel-Vasconcelos LGT, Reis de Carvalho CJ, Staudhammer CL, Oliveira FA (2008) Effects of seasonality, litter removal and dry-season irrigation on litterfall quantity and quality in eastern Amazonian forest regrowth, Brazil. J Trop Ecol 24:27–38

    CrossRef  Google Scholar 

  • Villagra M, Campanello PI, Montti Goldstein G (2013) Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance. Tree Physiol 33:285–296

    CAS  PubMed  CrossRef  Google Scholar 

  • Villalobos-Vega R, Goldstein G, Haridasan M, Franco AC, Miralles-Wilhelm F, Scholz FG, Bucci SJ (2011) Leaf litter manipulations alter soil physicochemical properties and tree growth in a Neotropical savanna. Plant Soil 346:385–397

    CAS  CrossRef  Google Scholar 

  • Vitousek PM, Farrington H (1997) Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochem 37:63–75

    CAS  CrossRef  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochem 13:87–115

    CrossRef  Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cyclling and nutrient limitation in tropical forests. Ecology 65:285–298

    CAS  CrossRef  Google Scholar 

  • Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forest. Ann Rev Ecol Syst 17:137–167

    CrossRef  Google Scholar 

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl 20:5–15

    PubMed  CrossRef  Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    CAS  CrossRef  Google Scholar 

  • Watanabe T, Broadley MR, Jansen S, White PJ, Takada J, Satake K, Takamatsu T, Tuah SJ, Osaki M (2007) Evolutionary control of leaf element composition in plants. New Phytol 174:516–523

    Google Scholar 

  • Winter K, Aranda J, Garcia M, Virgo A, Paton SR (2001) Effect of elevated CO2 and soil fertilization on whole-plant growth and water use in seedlings of a tropical pioneer tree Ficus insipida Willd. Flora 196:458–464

    Google Scholar 

  • Wood TE, Lawrence D, Clark DA, Chazdon RL (2009) Rain forest nutrient cycling and productivity in response to large-scale litter manipulation. Ecology 90:109–121

    PubMed  CrossRef  Google Scholar 

  • Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EVJ, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD (2011) Potassium, phosphorus or nitrogen limit root allocation, tree growth and litter production in a lowland tropical forest. Ecology 92:1616–1625

    PubMed  CrossRef  Google Scholar 

  • Yavitt JB, Harms KE, Garcia MN, Mirabello MJ, Wright SJ (2011) Soil fertility and fine root dynamics in response to 4 years of nutrient (N, P, K) fertilization in a lowland tropical moist forest, Panama. Austral Ecol 36:433–445

    CrossRef  Google Scholar 

  • Yuan ZY, Chen HYH (2012) A global analysis of fine root production as affected by soil nitrogen and phosphorus. Proc Roy Soc B 279:3796–3802

    CAS  CrossRef  Google Scholar 

  • Zhu F, Yoh M, Gilliam FS, Lu X, Mo J (2013) Nutrient limitation in three lowland tropical forests in southern China receiving high nitrogen deposition: insights from fine root responses to nutrient additions. PLoS ONE 8:e82661

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Sayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sayer, E.J., Banin, L.F. (2016). Tree Nutrient Status and Nutrient Cycling in Tropical Forest—Lessons from Fertilization Experiments. In: Goldstein, G., Santiago, L. (eds) Tropical Tree Physiology. Tree Physiology, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-27422-5_13

Download citation