Advertisement

Smart System Case Studies

  • Ignazio Blanco
  • Fabio Cenni
  • Roberto Carminati
  • Angelo Ciccazzo
  • Sandro Dalle Feste
  • Franco Fummi
  • Giuliana Gangemi
  • Fabio Grilli
  • Michelangelo GrossoEmail author
  • Mirko Guarnera
  • Michele Lora
  • Anna A. Pomarico
  • Gaetano Rasconà
  • Salvatore Rinaudo
  • Giuditta Roselli
Chapter

Abstract

This chapter presents two case studies showing how the proposed approach applies to smart system design and optimization. The former is the virtual prototyping platform built for a laser pico-projector actuator, where MEMS, analog and digital components are simulated with the aim of optimizing the resulting image quality by means of firmware tuning. The latter, in the context of wearable equipment for inertial body motion reconstruction, deals with the modeling of an inertial sensor node, supporting system accuracy evaluation and sensor fusion enhancement. Finally, the Open-Source Test Case (OSTC) is described, showing a complete modeling and simulation flow on a publicly available design.

Keywords

Sensor Node Extend Kalman Filter Sensor Fusion Digital Component Extend Kalman Filter Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Gillon, G. Gangemi, M. Grosso, F. Fummi, M. Poncino, Multi-domain simulation as a foundation for the engineering of smart systems: challenges and the SMAC vision, in IEEE International Conference on Electronics, Circuits and Systems (2014), pp. 858–861Google Scholar
  2. 2.
    M. Crepaldi, M. Grosso, A. Sassone, S. Gallinaro, S. Rinaudo, M. Poncino, E. Macii, D. Demarchi, A top-down constraint-driven methodology for smart system design, in IEEE Circuits and Systems Magazine, First Quarter (2014), pp. 37–57Google Scholar
  3. 3.
    M. Crepaldi, A. Sanginario, P. Motto Ros, M. Grosso, A. Sassone, M. Poncino, E. Macii, S. Rinaudo, G. Gangemi, D. Demarchi, Towards multi-domain and multi-physical electronic design, in IEEE Circuits and Systems Magazine, Third Quarter (2015), pp. 18–43Google Scholar
  4. 4.
    Pico Projector Market by Technology, Type, Product Model, Brightness, Application, Geography, Forecasts & Analysis (2013–2020). Research and Markets, 2014Google Scholar
  5. 5.
    N. Goren, I. Luft, S. Sourani, Method and device for monitoring movement of mirrors in a MEMS device. U.S. Patent 2011/0109951 A1, May 12, 2011Google Scholar
  6. 6.
    Vicon Motion Systems Ltd. http://www.vicon.com/
  7. 7.
    M. Grosso, G. Gangemi, S. Rinaudo, F. Cenni, M. Crepaldi, A. Sanginario, D. Demarchi, Enabling smart system design with the SMAC Platform, in IEEE Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (2015)Google Scholar
  8. 8.
    F. Cenni, O. Guillaume, M. Diaz-Nava, T. Maehne, SystemC-AMS/MDVP-based modeling for the virtual prototyping of MEMS applications, in IEEE Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (2015)Google Scholar
  9. 9.
    STMicroelectronics. iNEMO engine software libraries, http://www.st.com/web/catalog/tools/FM147/CL1818/SC1528
  10. 10.
    A. Sabatini, Quaternion-based Extended Kalman Filter for determining orientation by inertial and magnetic sensing. IEEE Trans. Biomed. Eng. 53(7), 1346–1356 (2006)CrossRefGoogle Scholar
  11. 11.
    C.M.N. Brigante, N. Abbate, A. Basile, A.C. Faulisi, S. Sessa, Towards miniaturization of a MEMS-based wearable motion capture system. IEEE Trans. Ind. Electron. 58(8), 3234–3241 (2001)CrossRefGoogle Scholar
  12. 12.
    S.L. Delp, F.C. Anderson, A.S. Arnold, P. Loan, A. Habib, C.T. John, E. Guendelman, D.G. Thelen, OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007)CrossRefGoogle Scholar
  13. 13.
    X. Zhang, L. Gao, A novel auto-calibration method of the vector magnetometer, in IEEE International Conference on Electronic Measurement & Instruments (2009), pp. I 145–150Google Scholar
  14. 14.
    Q. Li, J.G. Griffiths, Least square ellipsoid specific fitting, in IEEE Geometric Modeling and Processing (2004), pp. 335–340Google Scholar
  15. 15.
    National Geophysical Data Center – National Oceanic and Atmospheric Administration, Magnetic Field Calculator. http://www.ngdc.noaa.gov/geomag-web/
  16. 16.
    F. Fummi, D. Quaglia, F. Stefanni, A SystemC-based framework for modeling and simulation of networked embedded systems, in Proceedings of IEEE Forum Specification, Verification and Design Languages (2008)Google Scholar
  17. 17.
    Mentor Graphics, ModelSim-advanced simulation and debugging, 2012Google Scholar
  18. 18.
    U. Hatnik, S. Altmann, Using ModelSim, Matlab/Simulink and NS for simulation of distributed systems, in International Conference on Parallel Computing in Electrical Engineering (2004)Google Scholar
  19. 19.
    A. Kamppi, L. Matilainen, J. Maatta, E. Salminen, T.D. Hamalainen, M. Hannikainen, Kactus2: environment for embedded product development using IP-XACT and MCAPI, in Euromicro Conference on Digital System Design (DSD) (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ignazio Blanco
    • 1
  • Fabio Cenni
    • 2
  • Roberto Carminati
    • 3
  • Angelo Ciccazzo
    • 1
  • Sandro Dalle Feste
    • 3
  • Franco Fummi
    • 4
  • Giuliana Gangemi
    • 1
  • Fabio Grilli
    • 3
  • Michelangelo Grosso
    • 5
    Email author
  • Mirko Guarnera
    • 1
  • Michele Lora
    • 6
  • Anna A. Pomarico
    • 7
  • Gaetano Rasconà
    • 8
  • Salvatore Rinaudo
    • 1
  • Giuditta Roselli
    • 7
  1. 1.STMicroelectronics s.r.l.CataniaItaly
  2. 2.STMicroelectronics SACrollesFrance
  3. 3.STMicroelectronics s.r.l.Agrate Brianza (MB)Italy
  4. 4.EDALAB s.r.l.VeronaItaly
  5. 5.ST-Polito s.c.ar.l.TorinoItaly
  6. 6.Università di VeronaVeronaItaly
  7. 7.STMicroelectronics s.r.l.LecceItaly
  8. 8.ST-Polito s.c.ar.l.CataniaItaly

Personalised recommendations