Advertisement

Discrete Power Devices and Power Modules

  • Aleš Chvála
  • Davide Cristaldi
  • Daniel Donoval
  • Giuseppe Greco
  • Juraj Marek
  • Marián Molnár
  • Patrik Príbytný
  • Angelo RacitiEmail author
  • Giovanni Vinci
Chapter

Abstract

Methods devoted to electrothermal simulation are presented as a useful tool for both the analysis and characterization of behavior of power semiconductor devices standing alone, and/or coupled in integrated circuits or power modules. First of all the implementation of a devised flow to generate the layer-based electrothermal PSpice model of an IPEM (Integrated Power Electronics Module) and the simulation flow of the model is presented. The proposed methodology allows reducing an electrothermal multi-domain problem to a single electrical one. The general PSpice-like nature of the proposed model makes it suitable for a wide range of simulation frameworks and avoids the integration of heterogeneous multiphysics models. The outlining of both the electrical and thermal PSpice layers is discussed, and the implementation into the final model is presented. Besides, the validation procedure of the proposed approach is described and the results compared with the ones obtained by a commercial finite-element package used as a benchmark. Secondly, two main approaches to fast 3-D electrothermal simulation are proposed. The designed methods—automated interaction of Sentaurus Device and HSPICE based on the relaxation method and mixed-mode setup in Sentaurus Device, by Synopsys TCAD Sentaurus—are compared with standard device finite-element model simulation and a direct method with an equivalent thermal 3-D RC network. The proposed simulation methods have been developed for decreasing the simulation time for complex 3-D devices. A superjunction MOSFET and a DC–DC converter module under different operating conditions are used to perform the validation of the simulation and calibration of their parameters.

Keywords

Thermal Model Thermal Simulation Junction Temperature Thermal Layer Thermal Impedance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Bazzano, D. Cristaldi, G. Greco, A. Raciti, G. Vinci, Electro-thermal model of integrated power electronics modules based on an innovative layered approach, in Proceedings of the 39th Industrial Electronics Society Conference (IECON), Vienna, Austria, 10–13 November 2013, pp. 712–717Google Scholar
  2. 2.
    D. Cristaldi, G. Greco, A. Raciti, G. Vinci, Generation of electro-thermal models of integrated power electronics modules using a novel synthesis technique, in Proceedings of the 19th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), Berlin, Germany, 25–27 September 2013, pp. 216–221Google Scholar
  3. 3.
    A. Raciti, D. Cristaldi, Thermal modeling of integrated power electronic modules by a lumped-parameter circuit approach, in Proceedings of AEIT, Palermo, Italy, 3–5 October 2013Google Scholar
  4. 4.
    R.W. Lewis, K. Morgan, H.R. Thomas, K.N. Seetharamu, The Finite Element Method in Heat Transfer Analysis (Wiley, Hoboken, New Jersey, Stati Uniti 1996)Google Scholar
  5. 5.
    Z. Wan, L. Xu, Y. Zhang, X. Luo, M. Chen, J. Chen, S. Liu, Thermal analysis and improvement of high power electronic packages, in Proceedings of ICEPT-HDP, Shanghai, China, 2011, pp. 1–5Google Scholar
  6. 6.
    W. Zhang, D. Liu, R. Wang, X. Wang, Novel thermal analysis platform for IPEM, in Proceedings of the 3rd International Conference on Computer and Electrical Engineering (ICCEE), Singapore, China, 2010Google Scholar
  7. 7.
    I. Guven, C.L. Chan, E. Madenci, Transient two-dimensional thermal analysis of electronic packages by the boundary element method. IEEE Trans. Adv. Packag. 22, 476–486 (1999)CrossRefGoogle Scholar
  8. 8.
    C.A. Brebbia, L.C. Wrobel, Boundary Element Methods in Heat Transfer (Computational Mechanics Publications and Elsevier Applied Science, Amsterdam, NL 1992)Google Scholar
  9. 9.
    J.Z. Chen, Y. Wu, D. Borojevich, J.H. Bohn, Bradley, Integrated electrical and thermal modeling and analysis of IPEMs, in COMPEL, Blacksburg, Virginia, 2000, pp. 24–27Google Scholar
  10. 10.
    Z. Khatir, S. Carubelli, F. Lecoq, Real-time computation of thermal constraints in multichip power electronic devices. IEEE Trans. Compon. Packag. Technol. 27(2), 337–344 (2004)CrossRefGoogle Scholar
  11. 11.
    A. Poppe, Y. Zhang, J. Wilson, G. Farkas, P. Szabó, J. Parry, Thermal measurement and modeling of multi-die packages. IEEE Trans. Compon. Packag. Technol. 32(2), 484–492 (2009)CrossRefGoogle Scholar
  12. 12.
    J. Reichl, J.M. Ortiz-Rodriguez, A. Hefner, J.-S. Lai, 3D Thermal component model for electro- thermal analysis of multichip power modules with experimental validation. IEEE Trans. Power Electron. (2014). doi: 10.1109/TPEL.2014.2338278
  13. 13.
    P.L. Evans, A. Castellazzi, C.M. Johnson, Automated fast extractions of compact thermal models for power electronic modules. IEEE Trans. Power Electron. 28(10), 4791–4802 (2013)CrossRefGoogle Scholar
  14. 14.
    R.B.B. Ovando, F.A. Ramírez, C. Hernandez, M.A. Arjona, A 2D finite element thermal model of a three-phase-inverter heat sink, in Proceedings of CERMA, Morelos, Mexico, 2010, pp. 696–701Google Scholar
  15. 15.
    A. Raciti, D. Cristaldi, G. Bazzano, G. Greco, G. Vinci, Layered electro-thermal model of high-end integrated power electronics modules with IGBTs, in Proceedings of the 40th Industrial Electronics Society Conference (IECON), IECON, Dallas, TX, USA, October 29–November 1, 2014Google Scholar
  16. 16.
    A. Raciti, D. Cristaldi, G. Bazzano, G. Greco, G. Vinci, Integrated power electronics modules: electro-thermal modeling flow and stress conditions overview, in Proceedings of AEIT, Trieste, Italy, 18–19 September 2014Google Scholar
  17. 17.
    G. Bazzano, D.G. Cavallaro, G. Greco, A. Grimaldi, S. Rinaudo, 2D Thermal propagation analysis of discrete power devices based on an innovative distributed model technique and CAD framework, in IEEE 16th THERMINIC, Barcelona (Spain), 2010Google Scholar
  18. 18.
    ANSOFT, Ansys Q3D Extractor Online Help Ver. 10, 2010Google Scholar
  19. 19.
    COMSOL Inc., COMSOL Multiphysics Ver. 4.3, 2010Google Scholar
  20. 20.
    G. Belvedere, C. Guastella, M. Melito, S. Musumeci, A. Raciti, Low-voltage MOSFET with small on-resistance: an extended characterization in high-efficiency power converter applications, in IEEE Industry Applications Conference, Chicago, IL, USA 2001Google Scholar
  21. 21.
    G. Belvedere, M. Candelargiu, C. Guastella, M. Melito, S. Musumeci, Design considerations on the low-voltage MOSFET applications to wheelchair drive systems, in IEEE International Symposium on Industrial Electronics, L’Aquila, Italy 2002Google Scholar
  22. 22.
    P. Evans, C. Johnson, Fast extraction of dynamic thermal impedance for multi-chip power modules, in Proceedings of International Conference on Integrated Power Electronics Systems (CIPS), 16–18 March 2010, Nuremberg, German pp. 1–6Google Scholar
  23. 23.
    M. März, P. Nance, Thermal modeling of power electronic systems, in Proceedings of Application Note Information Technology, AG Munich, 2000, pp. 1–8Google Scholar
  24. 24.
    H. Agarwal, S. Venugopalan, M.-A. Chalkiadaki, N. Paydavosi, J.P. Duarte, S. Agnihotri et~al., Recent enhancements in BSIM6 bulk MOSFET model, in Proceedings of IEEE International Conference Simulation Semiconductor Processes and Devices, Glasgow, United Kingdom, September 2013, pp. 53–56Google Scholar
  25. 25.
    S. Russo, V. d’Alessandro, N. Rinaldi, Development of an enhanced ADS electrothermal simulation tool for RF circuits, in Proceedings of MOS-AK/GSA Workshop, Rome, Italy, 2010, pp. 1–26Google Scholar
  26. 26.
    R. Hefner, D.L. Blackburn, Thermal component models for electrothermal network simulation. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 17(3), 413–424 (1994)CrossRefGoogle Scholar
  27. 27.
    P.A. Mawby, P.M. Igic, M.S. Towers, New physics-based compact electro-thermal model of power diode dedicated to circuit simulation, in Proceedings of IEEE Circuits Systems ISCAS, Sydney, NSW, Australia, Vol. 3, May 2001, pp. 401–404Google Scholar
  28. 28.
    S. Wünsche, C. Clauss, P. Schwarz, F. Winkler, Electro-thermal circuit simulation using simulator coupling. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 5(3), 277–282 (1997)CrossRefGoogle Scholar
  29. 29.
    V. Košel, R. Illing, M. Glavanovics, A. Šatka, Non-linear thermal modeling of DMOS transistor and validation using electrical measurements and FEM simulations. Microelectron. J. 41(12), 889–896 (2010)CrossRefGoogle Scholar
  30. 30.
    W.V. Petegem, B. Geeraerts, W. Sansen, Electrothermal simulation and design of integrated circuits. IEEE J. Solid-State Circuits 29(2), 143–146 (1994)CrossRefGoogle Scholar
  31. 31.
    V. Košel, S. de Filippis, L. Chen, S. Decker, A. Irace, FEM simulation approach to investigate electro-thermal behavior of power transistors in 3-D. Microelectron. Rel. 53(3), 356–362 (2013)CrossRefGoogle Scholar
  32. 32.
    M. Vellvehi, X. Jorda, P. Godignon, J. Millan, Electro-thermal simulation of a DC/DC converter using a relaxation method, in Proceedings of 7th International Conference on Thermal, Mechanical Multiphysics Simulation Experiments in Micro-Electronics and Micro-Systems, Como, Italy, 2006, pp. 1–7Google Scholar
  33. 33.
    R. Gillon, P. Joris, H. Oprins, B. Vandevelde, A. Srinivasan, R. Chandra, Practical chip-centric electro-thermal simulations, in Proceedings of 14th International Workshop Thermal Investigation of ICs and Systems, Rome; Italy, 2008, pp. 220–223Google Scholar
  34. 34.
    P. Joris, R. Gillon, A. Srinivasan, R. Chandra (2007), Full-chip electro-thermal simulation using loosely coupled electrical and thermal simulators [Online]. Available: http://www.cadence.com/rl/Resources/conference_papers/9.9Presentation.pdf
  35. 35.
    R. Poore, M. Petersen (2012), Integrated electrothermal solution delivers thermally aware circuit simulation [Online]. Available: https://ieeetv.ieee.org/conference-highlights/ims-2012-microapps-ntegrated-electrothermal-solution-delivers-thermally-aware-circuit-simulation-rick-poore-agilent-eesof
  36. 36.
    S. Filippis, V. Košel, D. Dibra, S. Decker, H. Köck, A. Irace, ANSYS based 3D electro-thermal simulations for the evaluation of power MOSFETs robustness. Microelectron. Reliab. 51(9), 1954–1958 (2011)CrossRefGoogle Scholar
  37. 37.
    A. Chvála, D. Donoval, J. Marek, P. Príbytný, M. Molnár, M. Mikolášek, Fast 3-D electrothermal device/circuit simulation of power superjunction MOSFET based on SDevice and HSPICE interaction. IEEE Trans. Electron Devices 61(4), 1116–1122 (2014)CrossRefGoogle Scholar
  38. 38.
    TCAD Sentaurus User Manual, Version I-2013.12, Synopsys, San Jose, CA, USA, 2013Google Scholar
  39. 39.
    C.-S. Yun, X. Xu, A. Terterian, T. Cilento, Package reliability analysis with coupled electro-thermal and mechanical modeling, in Proceedings of Materials Research Society Symposium, San Francisco, CA, United States, vol. 1559, 2013, pp. 54–59Google Scholar
  40. 40.
    F. Nallet, L. Silvestri, C.-S. Yun, S. Holland, M. Rover, T. Cilento, TCAD simulation methodology for electrothermal analysis of discrete devices including package, in Proceedings of 26th International Symposium Power Semiconductor Devices ICs, Waikoloa, HI, United States, June 2014, pp. 334–337Google Scholar
  41. 41.
    A. Chvála, D. Donoval, A. Šatka, M. Molnár, J. Marek, P. Príbytný, Advanced methodology for fast 3-D TCAD device/circuit electrothermal simulation and analysis of power HEMTs. IEEE Trans. Electron Devices 62(3), 828–834 (2015)CrossRefGoogle Scholar
  42. 42.
    Synopsys, San Jose, CA, USA (1986), Technology computer-aided design [Online]. Available: http://www.synopsys.com/Tools/TCAD/Pages/default.aspx
  43. 43.
    K. Fischer, K. Shenai, Dynamics of power MOSFET switching under unclamped inductive loading conditions. IEEE Trans. Electron. Devices 43(6), 1007–1015 (1996)CrossRefGoogle Scholar
  44. 44.
    T. Fujihira, Theory of semiconductor super junction devices. Jpn. J. Appl. Phys. 36(10), 6254–6262 (1997)CrossRefGoogle Scholar
  45. 45.
    P. Moens, F. Bogman, H. Ziad, H. De Vleeschouwer, J. Baele, M. Tack et~al., UltiMOS: A local charge-balanced trench-based 600V super-junction device, in Proceedings 23rd International Symposium Power Semiconductor Devices ICs, 2011, pp. 304–307Google Scholar
  46. 46.
    A. Laprade et~al. A New PSPICE Electro-Thermal Subcircuit For Power MOSFETs, Application, Note 7532, Fairchild, 2003Google Scholar
  47. 47.
    P.E. Bagnoli, Thermal resistance analysis by induced transient (TRAIT) method for power electronic devices thermal characterization—Part I: fundamentals and theory. IEEE Trans. Power Electron. 13(6), 1208–1219 (1998)Google Scholar
  48. 48.
    R. Jancke, A. Wilde, R. Martin S. Reitz, P. Schneider, Simulation of electro-thermal interaction, in Proceedings Electronics System Integration Technology Conference, Berlin, Germany, 2010, pp. 1–6Google Scholar
  49. 49.
    Virginia Semiconductor, Inc. Fredericksburg, VA, USA (1997), Basic mechanical and thermal properties of silicon [Online]. Available: http://www.virginiasemi.com/
  50. 50.
    (2013). Thermal conductivity of some common materials and gases [Online]. Available: http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html
  51. 51.
    J. Rhayem, A. Wieers, A. Vrbicky, P. Moens, A. Villamor-Baliarda, J. Roig et al., Novel 3D electrothermal robustness optimization approach of super junction power MOSFETs under unclamped inductive switching, in Proceedings of 28th IEEE SEMI-THERM Symposium, San Jose, California, United States, March 2012, pp. 69–74Google Scholar
  52. 52.
    Analog Extensions to Verilog HDL, Version 1.0, Verilog-A Language Reference Manual, Silicon Valley, CA, USA, August 1996Google Scholar
  53. 53.
    A. Chvala, D. Donoval, J. Marek, P. Pribytny, M. Molnar, Power transistor models with temperature dependent parasitic effects for SPICE-like circuit simulation, in Proceedings International Conference Microelectronics, Nis, Serbia, 2012, pp. 255–258Google Scholar
  54. 54.
    A. Chvala, D. Donoval, J. Marek, P. Pribytny, M. Molnar, Advanced methodology for fast 3-D TCAD electrothermal simulations of power devices, in Proceedings of International Conference on Advanced Semiconductor Devices and Microsystems, Smolenice, Slovakia, 2014, pp. 331–334Google Scholar
  55. 55.
    D.L. Blackburn, Power MOSFET failure revisited, in Proceedings of 19th Annual IEEE Power Electronics Specialists Conference, Kyoto, Jpn, April 1988, pp. 681–688Google Scholar
  56. 56.
    Vishay Siliconix. Santa Clara, CA, USA (1994), Unclamped inductive switching rugged MOSFETs for rugged environments [Online]. Available: http://www.vishay.com/docs/70572/70572.pdf
  57. 57.
    NPX Semiconductors, Buck converters for SSL applications, in Appl. Note, http://www.nxp.com/documents/application_note/AN10876.pdf
  58. 58.
    A. Chvála, D. Donoval, L. Nagy, J. Marek, P. Príbytný, M. Molnár, 3-D Electrothermal device/circuit simulation of DC–DC converter module in multi-die IC, in Proceedings European Solid-State Device Research Conference, Venezia Lido, Italy, 2014, pp. 130–133Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Aleš Chvála
    • 1
  • Davide Cristaldi
    • 2
  • Daniel Donoval
    • 1
  • Giuseppe Greco
    • 3
  • Juraj Marek
    • 1
  • Marián Molnár
    • 1
  • Patrik Príbytný
    • 1
  • Angelo Raciti
    • 2
    Email author
  • Giovanni Vinci
    • 3
  1. 1.Slovak University of Technology in BratislavaBratislavaSlovakia
  2. 2.University of CataniaCataniaItaly
  3. 3.STMicroelectronicsCataniaItaly

Personalised recommendations