Skip to main content

Principles of Wake Energy Recovery and Flow Structure in Bodies Undergoing Rapid Shape Change

  • Conference paper
  • First Online:
  • 1608 Accesses

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 133))

Abstract

For a body moving within a fluid, its shape and the manner in which it morphs greatly impact the energy transfer between it and the flow. In vanishing bodies, vorticity is globally shed, while added mass-related energy is released into the fluid. We investigate square-tipped, streamlined-tipped, and hollow foils towed at \(10^{\circ }\) angle of attack and quickly retracted in the span-wise direction, as generic models of bodies of different form undergoing rapid shape and volume change. Particle image velocimetry shows that large differences exist in their globally shed wakes. The retracting square-tipped foil forms a wake with energy in excess of the potential flow estimate before retraction starts; the extra energy results in the formation of an additional vortex ring that adds unsteadiness and complexity to the form of the wake. The streamlined-tipped foil avoids creating such ring vortices, but sheds a much less energetic wake: numerical simulation shows that energy is transferred back to the foil during the retraction phase through a thrust force. Circulation calculations show that energy transfer is enabled by the gradual shape change in this foil and is associated with simultaneous pressure gradient-induced and vorticity tilting-induced vorticity annihilation. Finally, the hollow foil combines the advantages of near-complete transfer of the original added mass-related energy to the wake and absence of a vortex ring formation, resulting in an energetic and also cleanly-evolving, stable wake. Hence, modest differences in morphing body shape are shown to result in significantly different flow patterns.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alam, M.M., Zhou, Y., Yang, H.X., Guo, H., Mi, J.: The ultra-low Reynolds number airfoil wake. Exp. Fluids 48(1), 81–103 (2010)

    Article  Google Scholar 

  2. Biesheuvel, A., Hagmeijer, R.: On the force on a body moving in a fluid. Fluid Dyn. Res. 38(10), 716–742 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burgers, J.M.: On the resistance of fluids and vortex motion. Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings, vol. 23, pp. 774–782 (1920)

    Google Scholar 

  4. Childress, S., Vanderberghe, N., Zhang, J.: Hovering of a passive body in an oscillating airflow. Phys. Fluids 18, 117103 (2006)

    Article  MATH  Google Scholar 

  5. Dickinson, M.: Animal locomotion: how to walk on water? Nature 424, 621–622 (2003)

    Article  Google Scholar 

  6. Dong, H., Bozkurttas, M., Mittal, R., Madden, P., Lauder, G.V.: Computational modelling and analysis of the hydrodynamics of a highly deformable fish pectoral fin. J. Fluid Mech. 645, 345373 (2010)

    Article  MATH  Google Scholar 

  7. Drucker, E.G., Lauder, G.V.: A hydrodynamic analysis of fish swimming speed: wake structure and locomotor force in slow and fast labriform swimmers. J. Exp. Biol. 203, 2379–2393 (2000)

    Google Scholar 

  8. Eames, I.: Disappearing bodies and ghost vortices. Phil. Trans. R. Soc. A 366, 2219–2232 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hedenstrom, A., Johansson, L.C., Spedding, G.R.: Bird or bat: comparing airframe design and flight performance. Bioinsp. Biomim. 4, 015001 (2006)

    Article  Google Scholar 

  10. Hsieh, S.T., Lauder, G.V.: Running on water: three-dimensional force generation by basilisk lizards. Proc. Nat. Acad. Sci. 101, 16784–16788 (2004)

    Article  Google Scholar 

  11. Hu, D.L., Bush, J.W.M.: The hydrodynamics of water-walking arthropods. J. Fluid Mech. 644, 5–33 (2010)

    Article  MATH  Google Scholar 

  12. Huffard, C.L.: Locomotion by abdopus aculeatus (cephalopoda: Octopodidae): walking the line between primary and secondary defenses. J. Exp. Biol. 209, 3697–3707 (2006)

    Article  Google Scholar 

  13. Hunt, J.C.R., Eames, I.: The disappearance of viscous and laminar wakes in complex flows. J. Fluid Mech. 457, 111–132 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kanso, E.: Swimming due to transverse shape deformations. J. Fluid Mech. 631, 127148 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Klein, F.: Über die Bildung von Wirbeln in reibungslosen Flüssigkeiten. Z. Mathematik & Physik 58, 259–262 (1910)

    MATH  Google Scholar 

  17. Lighthill, J.: Mathematica biofluiddynamics. Society for Industrial and Applied Mathematics (1975)

    Google Scholar 

  18. Lighthill, J.: An Informal Introduction to Theoretical Fluid Mechanics. IMA monograph series, no. 2. Oxford University Press (1986)

    Google Scholar 

  19. Lindhe Norberg, U.M., Winter, Y.: Wing beat kinematics of a nectar-feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers. J. Exp. Biol. 209, 38873897 (2006)

    Google Scholar 

  20. Maertens, A.P., Weymouth, G.D.: Accurate Cartesian-grid simulations of near-body flows at intermediate Reynolds numbers. Comput. Methods Appl. Mech. Eng. 283, 106–129 (2015)

    Google Scholar 

  21. Milne-Thomson, L.M.: Theoretical Hydrodynamics. Dover Publications Inc (1968)

    Google Scholar 

  22. Morton, B.R.: The generation and decay of vorticity. Geophys. Astrophys. Fluid Dyn. 28(3–4), 277–308 (1984)

    Article  MATH  Google Scholar 

  23. Muller, U.K., Lentink, D.: Turning on a Dime. Science 306, 1899–1990 (2004)

    Article  Google Scholar 

  24. Packard, A.: Jet propulsion and the giant fibre response of loligo. Nature 221, 875–877 (1969)

    Article  Google Scholar 

  25. Polet, D.T., Rival, D.E., Weymouth, G.D.: Unsteady dynamics of rapid perching manoeuvres. J. Fluid Mech. (2015)

    Google Scholar 

  26. Raffel, M., Willert, C.E., Wereley, S.T., Kompenhans, J.: Particle Image Velocimetry: A Practical Guide; with 42 tables. Berlin (u.a.), Springer (2007)

    Google Scholar 

  27. Ramamurti, R., Sandberg, W.C., Lohner, R., Walker, J.A., Westneat, M.W.: Fluid dynamics of aquatic flight in the bird wrasse: three dimensional unsteady computations with fin deformation. J. Exp. Biol. 205, 29973008 (2002)

    Google Scholar 

  28. Spagnolie, S.E., Shelley, M.J.: Shape changing bodies in fluid: hovering, ratcheting, and bursting. Phys. Fluids 21, 013103 (2009)

    Article  MATH  Google Scholar 

  29. Taylor, G.I.: Formation of a vortex ring by giving an impulse to a circular disk and then dissolving it away. J. Appl. Phys. 24, 104 (1953)

    Article  MathSciNet  Google Scholar 

  30. Weymouth, G.D., Triantafyllou, M.S.: Global vorticity shedding for a shrinking cylinder. J. Fluid Mech. 702(July), 470–487 (2012)

    Article  MATH  Google Scholar 

  31. Weymouth, G.D., Triantafyllou, M.S.: Ultra-fast escape of a deformable jet-propelled body. J. Fluid Mech. 721, 367–385 (2013)

    Google Scholar 

  32. Weymouth, G.D., Yue, D.K.P.: Boundary data immersion method for Cartesian-grid simulations of fluid-body interaction problems. J. Comput. Phys. 230(16), 6233–6247 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wibawa, M.S., Steele, S.C., Dahl, J.M., Rival, D.E., Weymouth, G.D., Triantafyllou, M.S.: Global vorticity shedding for a vanishing wing. J. Fluid Mech. 695, 112–134 (2012)

    Google Scholar 

  34. Wu, J.Z., Wu, J.M.: Interactions between a solid surface and a viscous compressible flow field. J. Fluid Mech. 254, 183–211 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu, J.Z., Wu, J.M.: Boundary vorticity dynamics since Lighthill’s 1963 article: review and development. Theoret. Comput. Fluid Dyn. 10(1–4), 459–474 (1998)

    Article  MATH  Google Scholar 

  36. Wu, J.Z., Ma, H.Y., Zhou, M.D.: Vorticity and Vortex Dynamics: with 291 figures. Springer-Verlag, Berlin (2006)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Triantafyllou .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Steele, S.C., Weymouth, G.D., Dahl, J.M., Triantafyllou, M.S. (2016). Principles of Wake Energy Recovery and Flow Structure in Bodies Undergoing Rapid Shape Change. In: Braza, M., Bottaro, A., Thompson, M. (eds) Advances in Fluid-Structure Interaction. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 133. Springer, Cham. https://doi.org/10.1007/978-3-319-27386-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27386-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27384-6

  • Online ISBN: 978-3-319-27386-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics