Why Cytoskeletal Gel?

  • Yoshihito Osada
  • Ryuzo Kawamura
  • Ken-Ichi Sano


The cell which is surrounded by the hydrogels of ECM is also a hydrogel of cytoskeletal proteins. In vivo, cytoskeletons contribute to organization of cellular structures with the robust and dynamic nature. By the thickness of the cytoskeletal filaments, they are usually categorized into three types as microtubule (MT), actin, and intermediate filaments (IFs). In contrast to MT and actin in which amino acid sequences are relatively mutual among different species of living organisms, intermediate filaments have wider variety in the classified types. The roles of each cytoskeletal protein in relation to other cellular proteins have been intensively elucidated by biology, though it is still on the way to comprehensive understanding. Besides, physical property of the cytoskeleton has been investigated with biophysical interest. Rheometric analysis of cytoskeletal proteins as suspensions revealed the difference of viscoelastic properties among MT, actin, and IF even at a macroscopic scale [1]. This result indicates that nanometric features of unit molecules can be reflected to macroscopic ones of their suspension, presumably due to their hierarchical structure. Moreover, the hierarchical assemblies of these proteins are formed and maintained via dynamic self-assembly process. Since these filaments and the networked structures of them are physically robust with spatiotemporal organization, they are responsible not only to maintain the shapes of local cell structure or of whole cell but to give the change of these shapes and the motion with integration and synchronization upon the environmental changes. Such a property is quite unique to biological systems, when we look at them from a viewpoint of materials science. Utilization of cytoskeletal proteins for hydrogel materials, as an initial attempt, is promising to realize a new functional material with a concept of hierarchical structure. Before reviewing examples of hydrogels made up from the cytoskeletal proteins, basics about each cytoskeletal proteins, i.e., MT, actin, and IF, will be introduced below.


Cytoskeletal Protein Motor Protein Tubulin Dimer Cytoskeletal Filament Emergent Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Howard, J., Hudspeth, A.J., Vale, R.D.: Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989)CrossRefGoogle Scholar
  2. 2.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science, New York, NY (2002)Google Scholar
  3. 3.
    Sheterline, P., Clayton, J., Sparrow, J.C.: Actin, 4th edn. Oxford University Press, New York, NY (1998)Google Scholar
  4. 4.
    Oda, T., Stegmann, H., Schroder, R.R., Namba, K., Maeda, Y.: Modeling of the F-actin structure. Adv. Exp. Med. Biol. 592, 385–401 (2007)CrossRefGoogle Scholar
  5. 5.
    Kabsch, W., Mannherz, H.G., Suck, D., Pai, E.F., Holmes, K.C.: Atomic structure of the actin:DNase I complex. Nature 347, 37–44 (1990)CrossRefGoogle Scholar
  6. 6.
    Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton, 1st edn. Sinauer Associates, Inc., Sunderland, MA (2001)Google Scholar
  7. 7.
    Pollard, T.D.: Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J. Cell Biol. 103, 2747–2754 (1986)CrossRefGoogle Scholar
  8. 8.
    Pollard, T.D., Blanchoin, L., Mullins, R.D.: Actin dynamics. J. Cell Sci. 114, 3–4 (2001)Google Scholar
  9. 9.
    Pollard, T.D., Borisy, G.G.: Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003)CrossRefGoogle Scholar
  10. 10.
    Bernstein, B.W., Bamburg, J.R.: ADF/cofilin: a functional node in cell biology. Trends Cell Biol. 20, 187–195 (2010). doi: 10.1016/j.tcb.2010.01.001 CrossRefGoogle Scholar
  11. 11.
    Bugyi, B., Carlier, M.F.: Control of actin filament treadmilling in cell motility. Annu. Rev. Biophys. 39, 449–470 (2010). doi: 10.1146/annurev-biophys-051309-103849 CrossRefGoogle Scholar
  12. 12.
    Kreis, T., Ronald, V.: Guidebook to the Cytoskeletal and Motor Proteins. Oxford University Press, New York, NY (1999)Google Scholar
  13. 13.
    Nogales, E., Wolf, S.G., Downing, K.H.: Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391, 199–203 (1998)CrossRefGoogle Scholar
  14. 14.
    Hesse, J., Thierauf, M., Ponstingl, H.: Tubulin sequence region β155-174 is involved in binding exchangeable guanosine triphosphate. J. Biol. Chem. 262, 15472–15475 (1987)Google Scholar
  15. 15.
    Gittes, F., Mickey, B., Nettleton, J., Howard, J.: Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923–934 (1993)CrossRefGoogle Scholar
  16. 16.
    Karsenti, E., Nedelec, F., Surrey, T.: Modelling microtubule patterns. Nat. Cell Biol. 8, 1204–1211 (2006)CrossRefGoogle Scholar
  17. 17.
    Mitchison, T., Kirschner, M.: Dynamic instability of microtubule growth. Nature 312, 237–242 (1984)CrossRefGoogle Scholar
  18. 18.
    Hyman, A., Drechsel, D., Kellogg, D., Salser, S., Sawin, K., Steffen, P., Wordeman, L., Mitchison, T.: Preparation of modified tubulins. Methods Enzymol. 196, 478–485 (1991)CrossRefGoogle Scholar
  19. 19.
    Fygenson, D.K., Braun, E., Libchaber, A.: Phase diagram of microtubules. Phys. Rev. E 50, 1579–1588 (1994)CrossRefGoogle Scholar
  20. 20.
    Vale, R.D.: Millennial musings on molecular motors (Reprinted from Trends in Biochemical Science, vol 12, Dec., 1999). Trends Cell Biol. 9, M38–M42 (1999)CrossRefGoogle Scholar
  21. 21.
    Riedel-Kruse, I.H., Hilfinger, A., Howard, J., Julicher, F.: How molecular motors shape the flagellar beat. HFSP J. 1, 192–208 (2007)CrossRefGoogle Scholar
  22. 22.
    Lindemann, C.B., Lesich, K.A.: Flagellar and ciliary beating: the proven and the possible. J. Cell Sci. 123, 519–528 (2010)CrossRefGoogle Scholar
  23. 23.
    Bailey, K.: The structure of tropomyosin. Proc. R. Soc. Lond. B Biol. Sci. 141, 45–48 (1953)CrossRefGoogle Scholar
  24. 24.
    Gunning, P.W., Hardeman, E.C., Lappalainen, P., Mulvihill, D.P.: Tropomyosin - master regulator of actin filament function in the cytoskeleton. J. Cell Sci. 128, 2965–2974 (2015). doi: 10.1242/jcs.172502 CrossRefGoogle Scholar
  25. 25.
    Hitchcock-DeGregori, S.E.: Structural requirements of tropomyosin for binding to filamentous actin. Adv. Exp. Med. Biol. 358, 85–96 (1994)CrossRefGoogle Scholar
  26. 26.
    Whitby, F.G., Phillips Jr., G.N.: Crystal structure of tropomyosin at 7 Angstroms resolution. Proteins 38, 49–59 (2000)CrossRefGoogle Scholar
  27. 27.
    Phillips Jr., G.N., Chacko, S.: Mechanical properties of tropomyosin and implications for muscle regulation. Biopolymers 38, 89–95 (1996)CrossRefGoogle Scholar
  28. 28.
    Chang, W.C., Lee, L.P., Liepmann, D.: Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel. Lab Chip 5, 64–73 (2005)CrossRefGoogle Scholar
  29. 29.
    Crick, F.H.C.: The Fourier transform of a coiled-coil. Acta Cryst. 6, 685–689 (1952)CrossRefGoogle Scholar
  30. 30.
    McLachlan, A.D., Stewart, M., Smillie, L.B.: Sequence repeats in alpha-tropomyosin. J. Mol. Biol. 98, 281–291 (1975)CrossRefGoogle Scholar
  31. 31.
    Cohen, C.: Why fibrous proteins are romantic. J. Struct. Biol. 122, 3–16 (1998)CrossRefGoogle Scholar
  32. 32.
    Lupas, A.: Coiled coils: new structures and new functions. Trends Biochem. Sci. 21, 375–382 (1996)CrossRefGoogle Scholar
  33. 33.
    Smillie, L.B.: Structure and functions of tropomyosins from muscle and non-muscle sources. Trends Biochem. Sci. 4, 151–155 (1979)CrossRefGoogle Scholar
  34. 34.
    Vale, R.D., Fletterick, R.J.: The design plan of kinesin motors. Annu. Rev. Cell Dev. Biol. 13, 745–777 (1997)CrossRefGoogle Scholar
  35. 35.
    Tomishige, M., Stuurman, N., Vale, R.: Single-molecule observations of neck linker conformational changes in the kinesin motor protein. Nat. Struct. Mol. Biol. 13, 887–894 (2006)CrossRefGoogle Scholar
  36. 36.
    Schaller, V., Schmoller, K.M., Karakose, E., Hammerich, B., Maier, M., Bausch, A.R.: Cross-linking proteins modulate the self-organization of driven systems. Soft Matter 9, 7229–7233 (2013)CrossRefGoogle Scholar
  37. 37.
    Vale, R.D., Coppin, C.M., Malik, F., Kull, F.J., Milligan, R.A.: Tubulin GTP hydrolysis influences the structure, mechanical properties, and kinesin-driven transport of microtubules. J. Biol. Chem. 269, 23769–23775 (1994)Google Scholar
  38. 38.
    Fabry, B., Maksym, G.N., Butler, J.P., Glogauer, M., Navajas, D., Fredberg, J.J.: Scaling the microrheology of living cells. Phys. Rev. Lett. 87, 148102 (2001)CrossRefGoogle Scholar
  39. 39.
    Sano, K., Kawamura, R., Tominaga, T., Nakagawa, H., Oda, N., Ijiro, K., Osada, Y.: Thermoresponsive microtubule hydrogel with high hierarchical structure. Biomacromolecules 12, 1409–1413 (2011). doi: 10.1021/bm101578x CrossRefGoogle Scholar
  40. 40.
    Sano, K., Kawamura, R., Tominaga, T., Oda, N., Ijiro, K., Osada, Y.: Self-repairing filamentous actin hydrogel with hierarchical structure. Biomacromolecules 12, 4173–4177 (2011). doi: 10.1021/bm2009922 CrossRefGoogle Scholar
  41. 41.
    Hyman, A.A.: Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence. J. Cell Sci. 14, 125–127 (1991)CrossRefGoogle Scholar
  42. 42.
    Ghosh, S., Hentrich, C., Surrey, T.: Micropattern-controlled local microtubule nucleation, transport, and mesoscale organization. ACS Chem. Biol. 8, 673–678 (2013)CrossRefGoogle Scholar
  43. 43.
    Dogterom, M., Surrey, T.: Microtubule organization in vitro. Curr. Opin. Cell Biol. 25, 23–29 (2013)CrossRefGoogle Scholar
  44. 44.
    Howard, J., Hyman, A.A.: Dynamics and mechanics of the microtubule plus end. Nature 422, 753–758 (2003)CrossRefGoogle Scholar
  45. 45.
    Kakugo, A., Sugimoto, S., Gong, J.P., Osada, Y.: Gel machines constructed from chemically cross-linked actins and myosins. Adv. Mater. 14, 1124–1126 (2002)CrossRefGoogle Scholar
  46. 46.
    Kawamura, R., Kakugo, A., Shikinaka, K., Osada, Y., Gong, J.P.: Ring-shaped assembly of microtubules shows preferential counterclockwise motion. Biomacromolecules 9, 2277–2282 (2008)CrossRefGoogle Scholar
  47. 47.
    Kawamura, R., Sano, K.I., Ijiro, K., Osada, Y.: Chemically cross-linked microtubule assembly shows enhanced dynamic motions on kinesins. RSC Adv. 4, 32953–32959 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Yoshihito Osada
    • 1
  • Ryuzo Kawamura
    • 2
    • 3
  • Ken-Ichi Sano
    • 4
  1. 1.RIKENWako-shiJapan
  2. 2.Nakabayashi Laboratory Department of Chemistry Faculty of ScienceSaitama UniversityNaraJapan
  3. 3.Saitama University Department of ChemistrySaitama-shiJapan
  4. 4.Nagoya UniversityChikusa-kuJapan

Personalised recommendations