Advertisement

Assessment of Bile Duct Tumors: Endoscopic vs Radiographic

  • Irving WaxmanEmail author
  • Mariano Gonzalez-Haba
Chapter
Part of the Difficult Decisions in Surgery: An Evidence-Based Approach book series (DDSURGERY)

Abstract

Cholangiocarcinoma (CCA) is the second most common primary liver tumor and it’s associated with a poor prognosis. They diagnosis of CCA can be challenging because of its paucicellular nature, anatomic location, and silent clinical character. Cross sectional radiologic studies (MRI/MRCP and multidetector CT scan) are critical for diagnosis and staging CCA but their sensibility is yet improvable and they don’t allow tissue acquisition. ERCP has been for years the modality of choice for evaluating and sampling biliary strictures for malignancy. New endoscopic techniques like EUS and cholangioscopy and advances in imaging technologies and cytology processing have the potential of significantly improve the preoperative diagnostic accuracy of this malignancy.

Keywords

Cholangiocarcinoma Diagnosis Radiologic MRI/MRCP CT Endoscopy Endoscopic ultrasound ERCP 

References

  1. 1.
    Khan SA, et al. Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update. Gut. 2012;61(12):1657–69.CrossRefPubMedGoogle Scholar
  2. 2.
    Vilgrain V. Staging cholangiocarcinoma by imaging studies. HPB (Oxf). 2008;10(2):106–9.CrossRefGoogle Scholar
  3. 3.
    Rimola J, et al. Cholangiocarcinoma in cirrhosis: absence of contrast washout in delayed phases by magnetic resonance imaging avoids misdiagnosis of hepatocellular carcinoma. Hepatology. 2009;50(3):791–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Bridgewater J, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol. 2014;60(6):1268–89.CrossRefPubMedGoogle Scholar
  5. 5.
    Marrero JA, Ahn J, Rajender Reddy K. ACG clinical guideline: the diagnosis and management of focal liver lesions. Am J Gastroenterol. 2014;109(9):1328–47; quiz 1348.CrossRefPubMedGoogle Scholar
  6. 6.
    Aljiffry M, Walsh MJ, Molinari M. Advances in diagnosis, treatment and palliation of cholangiocarcinoma: 1990–2009. World J Gastroenterol. 2009;15(34):4240–62.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lee HY, et al. Preoperative assessment of resectability of hepatic hilar cholangiocarcinoma: combined CT and cholangiography with revised criteria. Radiology. 2006;239(1):113–21.CrossRefPubMedGoogle Scholar
  8. 8.
    Aloia TA, et al. High-resolution computed tomography accurately predicts resectability in hilar cholangiocarcinoma. Am J Surg. 2007;193(6):702–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Katabathina VS, et al. Adult bile duct strictures: role of MR imaging and MR cholangiopancreatography in characterization. Radiographics. 2014;34(3):565–86.CrossRefPubMedGoogle Scholar
  10. 10.
    Kim JY, et al. Contrast-enhanced MRI combined with MR cholangiopancreatography for the evaluation of patients with biliary strictures: differentiation of malignant from benign bile duct strictures. J Magn Reson Imaging. 2007;26(2):304–12.CrossRefPubMedGoogle Scholar
  11. 11.
    Singh A, et al. Diagnostic accuracy of MRCP as compared to ultrasound/CT in patients with obstructive jaundice. J Clin Diagn Res. 2014;8(3):103–7.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Masselli G, Gualdi G. Hilar cholangiocarcinoma: MRI/MRCP in staging and treatment planning. Abdom Imaging. 2008;33(4):444–51.CrossRefPubMedGoogle Scholar
  13. 13.
    Kim JY, et al. Clinical role of 18F-FDG PET-CT in suspected and potentially operable cholangiocarcinoma: a prospective study compared with conventional imaging. Am J Gastroenterol. 2008;103(5):1145–51.CrossRefPubMedGoogle Scholar
  14. 14.
    Ruys AT, et al. Staging laparoscopy for hilar cholangiocarcinoma: is it still worthwhile? Ann Surg Oncol. 2011;18(9):2647–53.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Patel AH, et al. The utility of CA 19-9 in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis. Am J Gastroenterol. 2000;95(1):204–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Fritscher-Ravens A, et al. EUS-guided fine-needle aspiration of suspected hilar cholangiocarcinoma in potentially operable patients with negative brush cytology. Am J Gastroenterol. 2004;99(1):45–51.CrossRefPubMedGoogle Scholar
  17. 17.
    De Bellis M, et al. Tissue sampling at ERCP in suspected malignant biliary strictures (part 1). Gastrointest Endosc. 2002;56(4):552–61.CrossRefPubMedGoogle Scholar
  18. 18.
    Fogel EL, et al. Effectiveness of a new long cytology brush in the evaluation of malignant biliary obstruction: a prospective study. Gastrointest Endosc. 2006;63(1):71–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Rosch T, et al. ERCP or EUS for tissue diagnosis of biliary strictures? A prospective comparative study. Gastrointest Endosc. 2004;60(3):390–6.CrossRefPubMedGoogle Scholar
  20. 20.
    de Bellis M, et al. Influence of stricture dilation and repeat brushing on the cancer detection rate of brush cytology in the evaluation of malignant biliary obstruction. Gastrointest Endosc. 2003;58(2):176–82.CrossRefPubMedGoogle Scholar
  21. 21.
    Brugge WR, et al. Techniques for cytologic sampling of pancreatic and bile duct lesions: the Papanicolaou Society of Cytopathology Guidelines. Cytojournal. 2014;11 Suppl 1:2.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Curcio G, et al. Intraductal aspiration: a promising new tissue-sampling technique for the diagnosis of suspected malignant biliary strictures. Gastrointest Endosc. 2012;75(4):798–804.CrossRefPubMedGoogle Scholar
  23. 23.
    Baron TH, et al. A prospective comparison of digital image analysis and routine cytology for the identification of malignancy in biliary tract strictures. Clin Gastroenterol Hepatol. 2004;2(3):214–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Levy MJ, et al. Prospective evaluation of advanced molecular markers and imaging techniques in patients with indeterminate bile duct strictures. Am J Gastroenterol. 2008;103(5):1263–73.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Smoczynski M, et al. Routine brush cytology and fluorescence in situ hybridization for assessment of pancreatobiliary strictures. Gastrointest Endosc. 2012;75(1):65–73.CrossRefPubMedGoogle Scholar
  26. 26.
    Mohamadnejad M, et al. Role of EUS for preoperative evaluation of cholangiocarcinoma: a large single-center experience. Gastrointest Endosc. 2011;73(1):71–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Ross WA, et al. Combined EUS with FNA and ERCP for the evaluation of patients with obstructive jaundice from presumed pancreatic malignancy. Gastrointest Endosc. 2008;68(3):461–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Garrow D, et al. Endoscopic ultrasound: a meta-analysis of test performance in suspected biliary obstruction. Clin Gastroenterol Hepatol. 2007;5(5):616–23.CrossRefPubMedGoogle Scholar
  29. 29.
    Heinzow HS, et al. Comparative analysis of ERCP, IDUS, EUS and CT in predicting malignant bile duct strictures. World J Gastroenterol. 2014;20(30):10495–503.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    DeWitt J, et al. EUS-guided FNA of proximal biliary strictures after negative ERCP brush cytology results. Gastrointest Endosc. 2006;64(3):325–33.CrossRefPubMedGoogle Scholar
  31. 31.
    Byrne MF, et al. Yield of endoscopic ultrasound-guided fine-needle aspiration of bile duct lesions. Endoscopy. 2004;36(8):715–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Gleeson FC, et al. EUS-guided FNA of regional lymph nodes in patients with unresectable hilar cholangiocarcinoma. Gastrointest Endosc. 2008;67(3):438–43.CrossRefPubMedGoogle Scholar
  33. 33.
    Heimbach JK, et al. Trans-peritoneal fine needle aspiration biopsy of hilar cholangiocarcinoma is associated with disease dissemination. HPB (Oxford). 2011;13(5):356–60.CrossRefGoogle Scholar
  34. 34.
    Micames C, et al. Lower frequency of peritoneal carcinomatosis in patients with pancreatic cancer diagnosed by EUS-guided FNA vs. percutaneous FNA. Gastrointest Endosc. 2003;58(5):690–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Ikezawa K, et al. Risk of peritoneal carcinomatosis by endoscopic ultrasound-guided fine needle aspiration for pancreatic cancer. J Gastroenterol. 2013;48(8):966–72.CrossRefPubMedGoogle Scholar
  36. 36.
    Kim JH, et al. Differential diagnosis of periampullary carcinomas at MR imaging. Radiographics. 2002;22(6):1335–52.CrossRefPubMedGoogle Scholar
  37. 37.
    Weilert F, et al. EUS-FNA is superior to ERCP-based tissue sampling in suspected malignant biliary obstruction: results of a prospective, single-blind, comparative study. Gastrointest Endosc. 2014;80(1):97–104.CrossRefPubMedGoogle Scholar
  38. 38.
    Aslanian HR, et al. Endoscopic ultrasound and endoscopic retrograde cholangiopancreatography for obstructing pancreas head masses: combined or separate procedures? J Clin Gastroenterol. 2011;45(8):711–3.CrossRefPubMedGoogle Scholar
  39. 39.
    Sai JK, et al. Early detection of extrahepatic bile-duct carcinomas in the nonicteric stage by using MRCP followed by EUS. Gastrointest Endosc. 2009;70(1):29–36.CrossRefPubMedGoogle Scholar
  40. 40.
    Chalasani N, et al. Cholangiocarcinoma in patients with primary sclerosing cholangitis: a multicenter case-control study. Hepatology. 2000;31(1):7–11.CrossRefPubMedGoogle Scholar
  41. 41.
    Burak K, et al. Incidence and risk factors for cholangiocarcinoma in primary sclerosing cholangitis. Am J Gastroenterol. 2004;99(3):523–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Chapman MH, et al. Cholangiocarcinoma and dominant strictures in patients with primary sclerosing cholangitis: a 25-year single-centre experience. Eur J Gastroenterol Hepatol. 2012;24(9):1051–8.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bjornsson E, et al. Dominant strictures in patients with primary sclerosing cholangitis. Am J Gastroenterol. 2004;99(3):502–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Stiehl A, et al. Development of dominant bile duct stenoses in patients with primary sclerosing cholangitis treated with ursodeoxycholic acid: outcome after endoscopic treatment. J Hepatol. 2002;36(2):151–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Navaneethan U, et al. Fluorescence in situ hybridization for diagnosis of cholangiocarcinoma in primary sclerosing cholangitis: a systematic review and meta-analysis. Gastrointest Endosc. 2014;79(6):943–50.e3.CrossRefPubMedGoogle Scholar
  46. 46.
    Levy C, et al. The value of serum CA 19-9 in predicting cholangiocarcinomas in patients with primary sclerosing cholangitis. Dig Dis Sci. 2005;50(9):1734–40.CrossRefPubMedGoogle Scholar
  47. 47.
    Sinakos E, et al. Many patients with primary sclerosing cholangitis and increased serum levels of carbohydrate antigen 19-9 do not have cholangiocarcinoma. Clin Gastroenterol Hepatol. 2011;9(5):434–9.e1.CrossRefPubMedGoogle Scholar
  48. 48.
    Rey JW, et al. Efficacy of SpyGlass(TM)-directed biopsy compared to brush cytology in obtaining adequate tissue for diagnosis in patients with biliary strictures. World J Gastrointest Endosc. 2014;6(4):137–43.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Tischendorf JJ, et al. Cholangioscopic characterization of dominant bile duct stenoses in patients with primary sclerosing cholangitis. Endoscopy. 2006;38(7):665–9.CrossRefPubMedGoogle Scholar
  50. 50.
    EASL. Clinical practice guidelines: management of cholestatic liver diseases. J Hepatol. 2009;51(2):237–67.CrossRefGoogle Scholar
  51. 51.
    Keane MG, Marlow NJ, Pereira SP. Novel endoscopic approaches in the diagnosis and management of biliary strictures. F1000Prime Rep. 2013;5:38.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Osanai M, et al. Peroral video cholangioscopy to evaluate indeterminate bile duct lesions and preoperative mucosal cancerous extension: a prospective multicenter study. Endoscopy. 2013;45(8):635–42.CrossRefPubMedGoogle Scholar
  53. 53.
    Ramchandani M, et al. Role of single-operator peroral cholangioscopy in the diagnosis of indeterminate biliary lesions: a single-center, prospective study. Gastrointest Endosc. 2011;74(3):511–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Nguyen NQ, Schoeman MN, Ruszkiewicz A. Clinical utility of EUS before cholangioscopy in the evaluation of difficult biliary strictures. Gastrointest Endosc. 2013;78(6):868–74.CrossRefPubMedGoogle Scholar
  55. 55.
    Menzel J, et al. Preoperative diagnosis of bile duct strictures – comparison of intraductal ultrasonography with conventional endosonography. Scand J Gastroenterol. 2000;35(1):77–82.CrossRefPubMedGoogle Scholar
  56. 56.
    Krishna NB, et al. Intraductal US in evaluation of biliary strictures without a mass lesion on CT scan or magnetic resonance imaging: significance of focal wall thickening and extrinsic compression at the stricture site. Gastrointest Endosc. 2007;66(1):90–6.CrossRefPubMedGoogle Scholar
  57. 57.
    Stavropoulos S, et al. Intraductal ultrasound for the evaluation of patients with biliary strictures and no abdominal mass on computed tomography. Endoscopy. 2005;37(8):715–21.CrossRefPubMedGoogle Scholar
  58. 58.
    Heif M, Yen RD, Shah RJ. ERCP with probe-based confocal laser endomicroscopy for the evaluation of dominant biliary stenoses in primary sclerosing cholangitis patients. Dig Dis Sci. 2013;58(7):2068–74.CrossRefPubMedGoogle Scholar
  59. 59.
    Gabbert C, et al. Advanced techniques for endoscopic biliary imaging: cholangioscopy, endoscopic ultrasonography, confocal, and beyond. Gastrointest Endosc Clin N Am. 2013;23(3):625–46.CrossRefPubMedGoogle Scholar
  60. 60.
    Arvanitakis M, et al. Intraductal optical coherence tomography during endoscopic retrograde cholangiopancreatography for investigation of biliary strictures. Endoscopy. 2009;41(8):696–701.CrossRefPubMedGoogle Scholar
  61. 61.
    Kirtane TS, Wagh MS. Endoscopic optical coherence tomography (OCT): advances in gastrointestinal imaging. Gastroenterol Res Pract. 2014;2014:376367.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Center for Endoscopic Research and Therapeutics (CERT), Center for Care and DiscoveryThe University of Chicago Medicine and Biological SciencesChicagoUSA

Personalised recommendations