Advertisement

What Is the Best Way to Assess Hepatic Reserve Prior to Liver Resection in the Cirrhotic Patient?

  • Yilei MaoEmail author
  • Shunda Du
Chapter
Part of the Difficult Decisions in Surgery: An Evidence-Based Approach book series (DDSURGERY)

Abstract

Postoperative liver failure still remains a major cause of mortality after partial hepatectomy, which results from an insufficient functional remnant liver. Therefore, the accurate evaluation of liver function is very important, particularly in cirrhotic patients who require hepatectomy. Traditional tests, such as serological indicators, Child-Pugh score, MELD score and ICG clearance test, are important in predicting and reducing the risks of hepatectomy. However, these tests only provide functional data on the entire liver, not on specific anatomic parts of the liver. Ideally, assessments of liver function should include both anatomical information and function of the whole and partial liver, providing reliable information for accurate evaluation of surgical risks. 99mTc-galactosyl serum albumin scintigraphy, can assess the liver function quantitatively. It combined with single photon emission computed tomography, CT and three-dimensional reconstruction, may be a better measure of liver function, especially of remnant liver function.

Keywords

Hepatic reserve Hepatectomy Cirrhosis Galactosyl serum albumin 

References

  1. 1.
    Fujii Y, et al. Risk factors of posthepatectomy liver failure after portal vein embolization. J Hepatobiliary Pancreatol Surg. 2003;10(3):226–32.CrossRefGoogle Scholar
  2. 2.
    Clavien PA, et al. Strategies for safer liver surgery and partial liver transplantation. N Engl J Med. 2007;356(15):1545–59.CrossRefPubMedGoogle Scholar
  3. 3.
    Mao YL, et al. Application of technetium galactosyl human serum albumin diethylenetriamine pentaacetic acid injection on liver imaging in mouse models with different hepatic injuries. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2008;30(4):404–8.PubMedGoogle Scholar
  4. 4.
    Pugh RN, et al. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973;60(8):646–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Poon RT, Fan ST. Assessment of hepatic reserve for indication of hepatic resection: how I do it. J Hepatobiliary Pancreatol Surg. 2005;12(1):31–7.CrossRefGoogle Scholar
  6. 6.
    Mizuguchi T, et al. Preoperative liver function assessments to estimate the prognosis and safety of liver resections. Surg Today. 2014;44(1):1–10.CrossRefPubMedGoogle Scholar
  7. 7.
    Schneider PD. Preoperative assessment of liver function. Surg Clin N Am. 2004;84(2):355–73.CrossRefPubMedGoogle Scholar
  8. 8.
    Malinchoc M, et al. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology. 2000;31(4):864–71.CrossRefPubMedGoogle Scholar
  9. 9.
    Cholongitas E, et al. A systematic review of the performance of the model for end-stage liver disease (MELD) in the setting of liver transplantation. Liver Transpl. 2006;12(7):1049–61.CrossRefPubMedGoogle Scholar
  10. 10.
    Huo TI, Lee SD, Lin HC. Selecting an optimal prognostic system for liver cirrhosis: the model for end-stage liver disease and beyond. Liver Int. 2008;28(5):606–13.CrossRefPubMedGoogle Scholar
  11. 11.
    Dutkowski P, et al. The model for end-stage liver disease allocation system for liver transplantation saves lives, but increases morbidity and cost: a prospective outcome analysis. Liver Transpl. 2011;17(6):674–84.CrossRefPubMedGoogle Scholar
  12. 12.
    Cucchetti A, et al. Impact of model for end-stage liver disease (MELD) score on prognosis after hepatectomy for hepatocellular carcinoma on cirrhosis. Liver Transpl. 2006;12(6):966–71.CrossRefPubMedGoogle Scholar
  13. 13.
    Abradelo M, Jimenez C. Splitting liver grafts for two adults: suboptimal grafts or suboptimal matching? Hepatobiliary Surg Nutr. 2013;2(5):242–3.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Kubota K, et al. Measurement of liver volume and hepatic functional reserve as a guide to decision-making in resectional surgery for hepatic tumors. Hepatology. 1997;26(5):1176–81.PubMedGoogle Scholar
  15. 15.
    Shoup M, et al. Volumetric analysis predicts hepatic dysfunction in patients undergoing major liver resection. J Gastrointest Surg. 2003;7(3):325–30.CrossRefPubMedGoogle Scholar
  16. 16.
    Vauthey JN, et al. Standardized measurement of the future liver remnant prior to extended liver resection: methodology and clinical associations. Surgery. 2000;127(5):512–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Clavien PA, et al. Protection of the liver during hepatic surgery. J Gastrointest Surg. 2004;8(3):313–27.CrossRefPubMedGoogle Scholar
  18. 18.
    Azoulay D, et al. Percutaneous portal vein embolization increases the feasibility and safety of major liver resection for hepatocellular carcinoma in injured liver. Ann Surg. 2000;232(5):665–72.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hemming AW, et al. Preoperative portal vein embolization for extended hepatectomy. Ann Surg. 2003;237(5):686–91; discussion 691–3.PubMedPubMedCentralGoogle Scholar
  20. 20.
    de Graaf W, et al. Assessment of future remnant liver function using hepatobiliary scintigraphy in patients undergoing major liver resection. J Gastrointest Surg. 2010;14(2):369–78.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Castera L, et al. Biopsy and non-invasive methods for the diagnosis of liver fibrosis: does it take two to tango? Gut. 2010;59(7):861–6.Google Scholar
  22. 22.
    Sandrin L, et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol. 2003;29(12):1705–13.CrossRefPubMedGoogle Scholar
  23. 23.
    Tsochatzis EA, et al. Elastography for the diagnosis of severity of fibrosis in chronic liver disease: a meta-analysis of diagnostic accuracy. J Hepatol. 2011;54(4):650–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Cescon M, et al. Value of transient elastography measured with FibroScan in predicting the outcome of hepatic resection for hepatocellular carcinoma. Ann Surg. 2012;256(5):706–12; discussion 712–3.CrossRefPubMedGoogle Scholar
  25. 25.
    Wong JS, et al. Liver stiffness measurement by transient elastography as a predictor on posthepatectomy outcomes. Ann Surg. 2013;257(5):922–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Morris-Stiff G, et al. Quantitative assessment of hepatic function and its relevance to the liver surgeon. J Gastrointest Surg. 2009;13(2):374–85.Google Scholar
  27. 27.
    Akita H, et al. Real-time intraoperative assessment of residual liver functional reserve using pulse dye densitometry. World J Surg. 2008;32(12):2668–74.CrossRefPubMedGoogle Scholar
  28. 28.
    Sakka SG. Assessing liver function. Curr Opin Crit Care. 2007;13(2):207–14.CrossRefPubMedGoogle Scholar
  29. 29.
    Scheingraber S, et al. Indocyanine green disappearance rate is the most useful marker for liver resection. Hepatogastroenterology. 2008;55(85):1394–9.PubMedGoogle Scholar
  30. 30.
    Ohwada S, et al. Perioperative real-time monitoring of indocyanine green clearance by pulse spectrophotometry predicts remnant liver functional reserve in resection of hepatocellular carcinoma. Br J Surg. 2006;93(3):339–46.CrossRefPubMedGoogle Scholar
  31. 31.
    Imamura H, et al. Assessment of hepatic reserve for indication of hepatic resection: decision tree incorporating indocyanine green test. J Hepatobiliary Pancreatol Surg. 2005;12(1):16–22.CrossRefGoogle Scholar
  32. 32.
    Das BC, Isaji S, Kawarada Y. Analysis of 100 consecutive hepatectomies: risk factors in patients with liver cirrhosis or obstructive jaundice. World J Surg. 2001;25(3):266–72; discussion 272–3.CrossRefPubMedGoogle Scholar
  33. 33.
    Lau H, et al. Evaluation of preoperative hepatic function in patients with hepatocellular carcinoma undergoing hepatectomy. Br J Surg. 1997;84(9):1255–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Fung J, et al. Use of liver stiffness measurement for liver resection surgery: correlation with indocyanine green clearance testing and post-operative outcome. PLoS ONE. 2013;8(8), e72306.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Okabe H, et al. Rank classification based on the combination of indocyanine green retention rate at 15 min and (99 m)Tc-DTPA-galactosyl human serum albumin scintigraphy predicts the safety of hepatic resection. Nucl Med Commun. 2014;35(5):478–83.CrossRefPubMedGoogle Scholar
  36. 36.
    Kudo M, et al. Functional hepatic imaging with receptor-binding radiopharmaceutical: clinical potential as a measure of functioning hepatocyte mass. Gastroenterol Jpn. 1991;26(6):734–41.PubMedGoogle Scholar
  37. 37.
    Shuke N, et al. Estimation of fractional liver uptake and blood retention of 99mTc-DTPA-galactosyl human serum albumin: an application of a simple graphical method to dynamic SPECT. Nucl Med Commun. 2003;24(5):503–11.CrossRefPubMedGoogle Scholar
  38. 38.
    Vera DR, Stadalnik RC, Krohn KA. Technetium-99 m galactosyl-neoglycoalbumin: preparation and preclinical studies. J Nucl Med. 1985;26(10):1157–67.PubMedGoogle Scholar
  39. 39.
    Kokudo N, et al. Predictors of successful hepatic resection: prognostic usefulness of hepatic asialoglycoprotein receptor analysis. World J Surg. 2002;26(11):1342–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Kaibori M, et al. Usefulness of Tc-99 m-GSA scintigraphy for liver surgery. Ann Nucl Med. 2011;25(9):593–602.CrossRefPubMedGoogle Scholar
  41. 41.
    Kudo M, et al. Synthesis and radiolabeling of galactosyl human serum albumin. Methods Enzymol. 1994;247:383–94.CrossRefPubMedGoogle Scholar
  42. 42.
    Kwon AH, et al. Use of technetium 99 m diethylenetriamine-pentaacetic acid-galactosyl-human serum albumin liver scintigraphy in the evaluation of preoperative and postoperative hepatic functional reserve for hepatectomy. Surgery. 1995;117(4):429–34.CrossRefPubMedGoogle Scholar
  43. 43.
    Harada K, et al. Area between the hepatic and heart curves of (99 m)Tc-galactosyl-human serum albumin scintigraphy represents liver function and disease progression for preoperative evaluation in hepatocellular carcinoma patients. J Hepatobiliary Pancreatol Sci. 2012;19(6):667–73.CrossRefGoogle Scholar
  44. 44.
    Wu J, et al. The functional hepatic volume assessed by 99mTc-GSA hepatic scintigraphy. Ann Nucl Med. 1995;9(4):229–35.CrossRefPubMedGoogle Scholar
  45. 45.
    Nanashima A, et al. Relationship between indocyanine green test and technetium-99 m galactosyl serum albumin scintigraphy in patients scheduled for hepatectomy: clinical evaluation and patient outcome. Hepatol Res. 2004;28(4):184–90.CrossRefPubMedGoogle Scholar
  46. 46.
    Miki K, et al. Asialoglycoprotein receptor and hepatic blood flow using technetium-99m-DTPA-galactosylhuman serum albumin. J Nucl Med. 1997;38(11):1798–807.Google Scholar
  47. 47.
    Miki K, et al. Receptor measurements via Tc-GSA kinetic modeling are proportional to functional hepatocellular mass. J Nucl Med. 2001;42(5):733–7.Google Scholar
  48. 48.
    Ha-Kawa SK, et al. Compartmental analysis of asialoglycoprotein receptor scintigraphy for quantitative measurement of liver function: a multicentre study. Eur J Nucl Med. 1997;24(2):130–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Kwon AH, et al. Preoperative determination of the surgical procedure for hepatectomy using technetium-99mgalactosyl human serum albumin (99mTc-GSA) liver scintigraphy. Hepatology. 1997;25(2):426–9.Google Scholar
  50. 50.
    Kwon AH, et al. Preoperative regional maximal removal rate of technetium-99 m-galactosyl human serum albumin (GSA-Rmax) is useful for judging the safety of hepatic resection. Surgery. 2006;140(3):379–86.CrossRefPubMedGoogle Scholar
  51. 51.
    Kaibori M, et al. HA/GSA-Rmax ratio as a predictor of postoperative liver failure. World J Surg. 2008;32(11):2410–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Du S, et al. A novel liver function evaluation system using radiopharmacokinetic modeling of technetium-99 m-DTPA-galactosyl human serum albumin. Nucl Med Commun. 2013;34(9):893–9.PubMedGoogle Scholar
  53. 53.
    Ge PL, Du SD, Mao YL. Advances in preoperative assessment of liver function. Hepatobiliary Pancreat Dis Int. 2014;13(4):361–70.CrossRefPubMedGoogle Scholar
  54. 54.
    Mao Y, et al. Using dynamic 99mT c-GSA SPECT/CT fusion images for hepatectomy planning and postoperative liver failure prediction. Ann Surg Oncol. 2015;22(4):1301–7.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalBeijingChina

Personalised recommendations