Skip to main content

Dissipated Energy is a Key Mediator of VILI: Rationale for Using Low Driving Pressures

  • Chapter

Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM)

Abstract

Positive pressure ventilation should never be seen as a simple and safe intervention, either in patients under general anesthesia for surgery in whom ventilation usually lasts minutes to hours, or in critically ill patients who generally need invasive ventilation for days to weeks. Indeed, positive pressure ventilation is increasingly recognized as a potentially harmful intervention, with ventilator-induced lung injury (VILI) as one of its most important adverse-effects [1]. So-called ‘lungprotective’ ventilation strategies, i.e., ventilation strategies aiming at prevention of VILI, have a strong potential to benefit patients with acute respiratory distress syndrome (ARDS) as well as patients with uninjured lungs [2].

What is the best way to protect the lungs during positive pressure ventilation? Should ‘lung-protective’ mechanical ventilation always include the use of low tidal volumes, because clinical studies showed that tidal volume restriction improved outcome of ARDS patients [3, 4] and suggested benefit in patients with uninjured lungs [5–7]? And should it always include higher levels of positive end-expiratory pressure (PEEP), because PEEP up-titration has been shown to improve outcome of ARDS patients [8]?

Recently, another ventilator setting has been suggested that could reduce harm from positive pressure ventilation. In a large cohort of patients with ARDS the “driving pressure”, defined as the plateau pressure or its equivalent minus the level of PEEP, appeared to be strongly and independently associated with mortality [9]. This review focuses on the interaction between energy dissipated in the lung during positive pressure ventilation as a rationale for aiming for the lowest driving pressure by manipulating tidal volume size and the level of PEEP in individual patients.

Keywords

  • Tidal Volume
  • Acute Respiratory Distress Syndrome
  • Positive Pressure Ventilation
  • Acute Respiratory Distress Syndrome Patient
  • Plateau Pressure

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-27349-5_25
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-27349-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)

References

  1. Slutsky AS, Ranieri VM (2013) Ventilator-induced lung injury. N Engl J Med 369:2126–2136

    CAS  CrossRef  PubMed  Google Scholar 

  2. Serpa NA, Nagtzaam L, Schultz MJ (2014) Ventilation with lower tidal volumes for critically ill patients without the acute respiratory distress syndrome: a systematic translational review and metaanalysis. Curr Opin Crit Care 20:25–32

    CrossRef  Google Scholar 

  3. Putensen C, Theuerkauf N, Zinserling J, Wrigge H, Pelosi P (2009) Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury. Ann Intern Med 151:566–576

    CrossRef  PubMed  Google Scholar 

  4. Burns KE, Adhikari NK, Slutsky AS et al (2011) Pressure and volume limited ventilation for the ventilatory management of patients with acute lung injury: a systematic review and meta-analysis. PLoS One 6:e14623

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Serpa NA, Simonis FD, Barbas CS et al (2014) Association between tidal volume size, duration of ventilation, and sedation needs in patients without acute respiratory distress syndrome: an individual patient data meta-analysis. Intensive Care Med 40:950–957

    CrossRef  Google Scholar 

  6. Serpa NA, Cardoso SO, Manetta JA et al (2012) Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA 308:1651–1659

    CrossRef  Google Scholar 

  7. Serpa NA, Simonis FD, Barbas CS et al (2015) Lung-protective ventilation with low tidal volumes and the occurrence of pulmonary complications in patients without acute respiratory distress syndrome: a systematic review and individual patient data analysis. Crit Care Med 43:2155–2163

    CrossRef  Google Scholar 

  8. Briel M, Meade M, Mercat A et al (2010) Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 303:865–873

    CAS  CrossRef  PubMed  Google Scholar 

  9. Amato MB, Meade MO, Slutsky AS et al (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372:747–755

    CAS  CrossRef  PubMed  Google Scholar 

  10. Baker AB (1971) Artificial respiration, the history of an idea. Med Hist 15:336–351

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164

    CAS  CrossRef  PubMed  Google Scholar 

  12. Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323

    CAS  CrossRef  PubMed  Google Scholar 

  13. Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest 116:9S–15S

    CAS  CrossRef  PubMed  Google Scholar 

  14. Wolthuis EK, Vlaar AP, Choi G, Roelofs JJ, Juffermans NP, Schultz MJ (2009) Mechanical ventilation using non-injurious ventilation settings causes lung injury in the absence of pre-existing lung injury in healthy mice. Crit Care 13:R1

    CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Trembley LN, Slutsky AS (2006) Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Med 32:24–33

    CrossRef  Google Scholar 

  16. Tremblay LN, Slutsky AS (1998) Ventilator-induced injury: from barotrauma to biotrauma. Proc Assoc Am Physicians 110:482–438

    CAS  PubMed  Google Scholar 

  17. Imai Y, Parodo J, Kajikawa O et al (2003) Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA 289:2104–2112

    CrossRef  PubMed  Google Scholar 

  18. Serpa NA, Hemmes SNT, Barbas CSV et al (2015) Protective versus conventional ventilation for surgery: a systematic review and individual patient data meta-analysis. Anesthesiology 123:66–78

    CrossRef  Google Scholar 

  19. Güldner A, Kiss T, Serpa NA, Hemmes SN et al (2015) Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers. Anesthesiology 123:692–713

    CrossRef  PubMed  Google Scholar 

  20. Protti A, Votta E, Gattinoni L (2014) Which is the most important strain in the pathogenesis of ventilator-induced lung injury: dynamic or static? Curr Opin Crit Care 20:33–38

    CrossRef  PubMed  Google Scholar 

  21. Protti A, Andreis DT, Monti M et al (2013) Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med 41:1046–1055

    CrossRef  PubMed  Google Scholar 

  22. Tschumperlin DJ, Oswari J, Margulies AS (2000) Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude. Am J Respir Crit Care Med 162:357–362

    CAS  CrossRef  PubMed  Google Scholar 

  23. Birukov KG, Jacobson JR, Flores AA et al (2003) Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch. Am J Physiol Lung Cell Mol Physiol 285:L785–L797

    CAS  CrossRef  PubMed  Google Scholar 

  24. Ye H, Zhan Q, Ren Y, Liu X, Yang C, Wang C (2012) Cyclic deformation-induced injury and differentiation of rat alveolar epithelial type II cells. Respir Physiol Neurobiol 180:237–246

    CrossRef  PubMed  Google Scholar 

  25. Garcia CS, Rocco PR, Facchinetti LD et al (2004) What increases type III procollagen mRNA levels in lung tissue: stress induced by changes in force or amplitude? Respir Physiol Neurobiol 144:59–70

    CAS  CrossRef  PubMed  Google Scholar 

  26. Vlahakis NE, Schroeder MA, Pagano RE, Hubmayr RD (2001) Deformation-induced lipid trafficking in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 280:L938–L946

    CAS  PubMed  Google Scholar 

  27. Vlahakis NE, Schroeder MA, Pagano RE, Hubmayr RD (2002) Role of deformation-induced lipid trafficking in the prevention of plasma membrane stress failure. Am J Respir Crit Care Med 166:1282–1289

    CrossRef  PubMed  Google Scholar 

  28. Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148:1194–1203

    CAS  CrossRef  PubMed  Google Scholar 

  29. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99:944–952

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Caironi P, Cressoni M, Chiumello D et al (2010) Lung opening and closing during ventilation of acute respiratory distress syndrome. Am J Respir Crit Care Med 181:578–586

    CrossRef  PubMed  Google Scholar 

  31. Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334

    CAS  CrossRef  PubMed  Google Scholar 

  32. Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110:556–565

    CAS  PubMed  Google Scholar 

  33. Verbrugge SJ, Sorm V, van't Veen A, Mouton JW, Gommers D, Lachmann B (1998) Lung overinflation without positive end-expiratory pressure promotes bacteremia after experimental Klebsiella pneumoniae inoculation. Intensive Care Med 24:172–177

    CAS  CrossRef  PubMed  Google Scholar 

  34. Bachofen H (1968) Lung tissue resistance and pulmonary hysteresis. J Appl Physiol 24:296–301

    CAS  PubMed  Google Scholar 

  35. Bachofen H, Hildebrandt J (1971) Area analysis of pressure-volume hysteresis in mammalian lungs. J Appl Physiol 30:493–497

    CAS  PubMed  Google Scholar 

  36. Horie T, Hildebrandt J (1973) Dependence of lung hysteresis area on tidal volume, duration of ventilation, and history. J Appl Physiol 35:596–600

    CAS  PubMed  Google Scholar 

  37. Amato MB, Barbas CS, Medeiros DM et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354

    CAS  CrossRef  PubMed  Google Scholar 

  38. Estenssoro E, Dubin A, Laffaire E et al (2002) Incidence, clinical course, and outcome in 217 patients with acute respiratory distress syndrome. Crit Care Med 30:2450–2456

    CrossRef  PubMed  Google Scholar 

  39. de Matos GF, Stanzani F, Passos RH et al (2012) How large is the lung recruitability in early acute respiratory distress syndrome: a prospective case series of patients monitored by computed tomography. Crit Care 16:R4

    CrossRef  PubMed  PubMed Central  Google Scholar 

  40. Boussarsar M, Thierry G, Jaber S, Roudot-Thoraval F, Lemaire F, Brochard L (2002) Relationship between ventilatory settings and barotrauma in the acute respiratory distress syndrome. Intensive Care Med 28:406–413

    CrossRef  PubMed  Google Scholar 

  41. Boissier F, Katsahian S, Razazi K et al (2013) Prevalence and prognosis of cor pulmonale during protective ventilation for acute respiratory distress syndrome. Intensive Care Med 39:1725–1733

    CrossRef  PubMed  Google Scholar 

  42. Legras A, Caille A, Begot E et al (2015) Acute respiratory distress syndrome (ARDS)-associated acute cor pulmonale and patent foramen ovale: a multicenter noninvasive hemodynamic study. Crit Care 19:174

    CrossRef  PubMed  PubMed Central  Google Scholar 

  43. Schmidt M, Stewart C, Bailey M et al (2015) Mechanical ventilation management during extracorporeal membrane oxygenation for acute respiratory distress syndrome: a retrospective international multicenter study. Crit Care Med 43:654–664

    CAS  CrossRef  PubMed  Google Scholar 

  44. Goligher EC, Fan E, Herridge MS et al (2015) Evolution of diaphragm thickness during mechanical ventilation: impact of inspiratory effort. Am J Respir Crit Care Med 192:1080–1088

    CrossRef  PubMed  Google Scholar 

  45. Chiumello D, Carlesso E, Cadringher P et al (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178:346–355

    CrossRef  PubMed  Google Scholar 

  46. Loring SH, Malhotra A (2015) Driving pressure and respiratory mechanics in ARDS. N Engl J Med 372:776–777

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  47. Talmor D, Sarge T, Malhotra A et al (2008) Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 359:2095–2104

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  48. Albaiceta GM, Taboada F, Parra D, Blanco A, Escudero D, Otero J (2003) Differences in the deflation limb of the pressure-volume curves in acute respiratory distress syndrome from pulmonary and extrapulmonary origin. Intensive Care Med 29:1943–1949

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Schultz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Serpa Neto, A., Amato, M.B.P., Schultz, M.J. (2016). Dissipated Energy is a Key Mediator of VILI: Rationale for Using Low Driving Pressures. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2016. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-27349-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27349-5_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27348-8

  • Online ISBN: 978-3-319-27349-5

  • eBook Packages: MedicineMedicine (R0)