Skip to main content

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 2048 Accesses

Abstract

The principles of extracorporeal life support started with the first experimental efforts of Jean Baptiste Denis who circa 1693 performed a cross-transfusion of the blood of a human with the “gentle humors of a lamb” to determine whether living blood could be transmitted between two creatures [1]. However, clinical efforts to provide extracorporeal support began around 1930 with the work of John and Mary Gibbon. They developed a freestanding roller pump device for extracorporeal support after the death of a patient from a pulmonary embolus. Sixteen years later, the first human use of the device was performed in the operating room to assist during repair of an atrial septal defect in 1953. After some years, the use of the silicone membrane oxygenator, which was developed to allow recovery outside the operating room, led to the use of the term extracorporeal membrane oxygenation (ECMO). In the 1960s, with the development of gas-exchange devices, a silicone rubbermembrane was interposed between the blood and the oxygen. This modification (and others) allowed the use of a heart-lung machine for days or weeks [3] reducing the threshold for their use. In 1972, Dr Bartlett successfully provided ECMO support to a two-year old boy following a Mustard procedure for correction of transposition of the great vessels with subsequent cardiac failure. The patient underwent ECMO support for 36 h until recovery. In 1975, the first neonate (Esperanza) with respiratory failure underwent ECMO support for 72 h and was successfully decannulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Annich GM, Lynch WR, MacLaren G, Wilson JM, Bartlett RH (2012) ECMO Extracorporeal Cardiopulmonary Support in Critical Care, 4th edn. Extracorporeal Life Support Organization, Ann Arbor

    Google Scholar 

  2. Cooper DS, Jacobs JP, Moore L et al (2007) Cardiac extracorporeal life support: state of the art in 2007. Cardiol Young 17(Suppl 2):104–115

    PubMed  Google Scholar 

  3. Bartlett RH (2005) Extracorporeal life support: history and new directions. ASAIO 51:487–489

    Article  Google Scholar 

  4. Kolackova M, Krejsek J, Svitek V et al (2012) The effect of conventional and mini-invasive cardiopulmonary bypass on neutrophil activation in patients undergoing coronary artery bypass grafting. Mediators Inflamm 2012:152895

    Article  PubMed  PubMed Central  Google Scholar 

  5. Koning NJ, Vonk AB, van Barneveld LJ et al (2012) Pulsatile flow during cardiopulmonary bypass preserves postoperative microcirculatory perfusion irrespective of systemic hemodynamics. J Appl Physiol 1985(112):1727–1734

    Article  Google Scholar 

  6. O'Neil MP, Fleming JC, Badhwar A, Guo LR (2012) Pulsatile versus nonpulsatile flow during cardiopulmonary bypass: microcirculatory and systemic effects. Ann Thorac Surg 94:2046–2053

    Article  PubMed  Google Scholar 

  7. Vellinga NA, Ince C, Boerma EC (2010) Microvascular dysfunction in the surgical patient. Curr Opin Crit Care 16:377–383

    Article  PubMed  Google Scholar 

  8. Lamy A, Devereaux PJ, Prabhakaran D et al (2012) Off-pump or on-pump coronary-artery bypass grafting at 30 days. N Engl J Med 366:1489–1497

    Article  CAS  PubMed  Google Scholar 

  9. Lamy A, Devereaux PJ, Prabhakaran D et al (2013) Effects of off-pump and on-pump coronary-artery bypass grafting at 1 year. N Engl J Med 368:1179–1188

    Article  CAS  PubMed  Google Scholar 

  10. Seguel SE, Gonzalez R, Stockins A, Alarcon CE, Concha CR (2013) Off-pump coronary surgery. Experience in 220 patients. Rev Med Chil 141:281–290

    Article  Google Scholar 

  11. Thourani VH, Guyton RA (2012) Graft patency after off-pump coronary artery bypass surgery. Circulation 125:2806–2808

    Article  PubMed  Google Scholar 

  12. De Backer D, Dubois MJ, Schmartz D et al (2009) Microcirculatory alterations in cardiac surgery: effects of cardiopulmonary bypass and anesthesia. Ann Thorac Surg 88:1396–1403

    Article  PubMed  Google Scholar 

  13. Bienz M, Drullinsky D, Stevens LM, Bracco D, Noiseux N (2016) Microcirculatory response during on-pump versus off-pump coronary artery bypass graft surgery. Perfusion (in press)

    Google Scholar 

  14. Elbers PW, Wijbenga J, Solinger F et al (2011) Direct observation of the human microcirculation during cardiopulmonary bypass: effects of pulsatile perfusion. J Cardiothorac Vasc Anesth 25:250–255

    Article  PubMed  Google Scholar 

  15. Koning NJ, Vonk AB, Meesters MI et al (2014) Microcirculatory perfusion is preserved during off-pump but not on-pump cardiac surgery. J Cardiothorac Vasc Anesth 28:336–341

    Article  PubMed  Google Scholar 

  16. Grubhofer G, Mares P, Rajek A et al (2000) Pulsatility does not change cerebral oxygenation during cardiopulmonary bypass. Acta Anaesthesiol Scand 44:586–591

    Article  CAS  PubMed  Google Scholar 

  17. Forti A, Comin A, Lazzarotto N et al (2012) Pump flow changes do not impair sublingual microcirculation during cardiopulmonary bypass. J Cardiothorac Vasc Anesth 26:785–790

    Article  PubMed  Google Scholar 

  18. Voss B, Krane M, Jung C et al (2010) Cardiopulmonary bypass with physiological flow and pressure curves: pulse is unnecessary! Eur J Cardiothorac Surg 37:223–232

    Article  PubMed  Google Scholar 

  19. Schmidt M, Bailey M, Kelly J et al (2014) Impact of fluid balance on outcome of adult patients treated with extracorporeal membrane oxygenation. Intensive Care Med 40:1256–1266

    Article  CAS  PubMed  Google Scholar 

  20. Ince C (2014) The rationale for microcirculatory guided fluid therapy. Curr Opin Crit Care 20:301–308

    Article  PubMed  Google Scholar 

  21. Bartels SA, Bezemer R, Milstein DM et al (2011) The microcirculatory response to compensated hypovolemia in a lower body negative pressure model. Microvasc Res 82:374–380

    Article  PubMed  Google Scholar 

  22. Atasever B, van der Kuil M, Boer C et al (2012) Red blood cell transfusion compared with gelatin solution and no infusion after cardiac surgery: effect on microvascular perfusion, vascular density, hemoglobin, and oxygen saturation. Transfusion 52:2452–2458

    Article  CAS  PubMed  Google Scholar 

  23. Yuruk K, Bartels SA, Milstein DM et al (2012) Red blood cell transfusions and tissue oxygenation in anemic hematology outpatients. Transfusion 52:641–646

    Article  CAS  PubMed  Google Scholar 

  24. Mukaida H, Matsushita S, Inotani T et al (2015) Peripheral circulation evaluation with near-infrared spectroscopy in skeletal muscle during cardiopulmonary bypass. Perfusion 30:653–659

    Article  CAS  PubMed  Google Scholar 

  25. Amberman K, Shen I (2010) Minimizing reperfusion injuries: successful resuscitation using eCPR after cardiac arrest on a post-operative Norwood patient. J Extra Corpor Technol 42:238–241

    PubMed  PubMed Central  Google Scholar 

  26. Zhao L, Luo L, Chen J et al (2014) Utilization of extracorporeal membrane oxygenation alleviates intestinal ischemia-reperfusion injury in prolonged hemorrhagic shock animal model. Cell Biochem Biophys 70:1733–1740

    Article  CAS  PubMed  Google Scholar 

  27. Baker E, Lee G (2016) The science of reperfusion injury post cardiac arrest – Implications for emergency nurses. Int Emerg Nurs (in press)

    Google Scholar 

  28. Stub D, Bernard S, Pellegrino V et al (2015) Refractory cardiac arrest treated with mechanical CPR, hypothermia, ECMO and early reperfusion (the CHEER trial). Resuscitation 86:88–94

    Article  PubMed  Google Scholar 

  29. Joachimsson PO, Sjoberg F, Forsman M et al (1996) Adverse effects of hyperoxemia during cardiopulmonary bypass. J Thorac Cardiovasc Surg 112:812–819

    Article  CAS  PubMed  Google Scholar 

  30. Kamler M, Wendt D, Pizanis N et al (2004) Deleterious effects of oxygen during extracorporeal circulation for the microcirculation in vivo. Eur J Cardiothorac Surg 26:564–570

    Article  CAS  PubMed  Google Scholar 

  31. Aissaoui N, Luyt CE, Leprince P et al (2011) Predictors of successful extracorporeal membrane oxygenation (ECMO) weaning after assistance for refractory cardiogenic shock. Intensive Care Med 37:1738–1745

    Article  PubMed  Google Scholar 

  32. Cavarocchi NC, Pitcher HT, Yang Q et al (2013) Weaning of extracorporeal membrane oxygenation using continuous hemodynamic transesophageal echocardiography. J Thorac Cardiovasc Surg 146:1474–1479

    Article  PubMed  Google Scholar 

  33. Tokita Y, Yamamoto T, Sato N et al (2014) Usefulness of N-terminal pro-brain natriuretic peptide levels to predict success of weaning from intra-aortic balloon pumping. Am J Cardiol 114:942–945

    Article  CAS  PubMed  Google Scholar 

  34. Luyt CE, Landivier A, Leprince P et al (2012) Usefulness of cardiac biomarkers to predict cardiac recovery in patients on extracorporeal membrane oxygenation support for refractory cardiogenic shock. J Crit Care 27:524

    Article  PubMed  Google Scholar 

  35. Reis Miranda D, van Thiel R, Brodie D, Bakker J (2015) Right ventricular unloading after initiation of venovenous extracorporeal membrane oxygenation. Am J Respir Crit Care Med 191:346–348 (Correspondence)

    Article  PubMed  Google Scholar 

  36. Top AP, Buijs EA, Schouwenberg PH et al (2012) The microcirculation is unchanged in neonates with severe respiratory failure after the initiation of ECMO treatment. Crit Care Res Pract 2012:372956

    PubMed  PubMed Central  Google Scholar 

  37. Top AP, Ince C, van Dijk M, Tibboel D (2009) Changes in buccal microcirculation following extracorporeal membrane oxygenation in term neonates with severe respiratory failure. Crit Care Med 37:1121–1124

    Article  CAS  PubMed  Google Scholar 

  38. Aykut G, Veenstra G, Scorcella C, Ince C, Boerma C (2015) Cytocam-IDF (incident dark field illumination) imaging for bedside monitoring of the microcirculation. Intensive Care Med Exp 3:40

    Article  PubMed  Google Scholar 

  39. Akin S, Struijs A, van Thiel RJ, Kara A, Caliskan K, Gommers D, Ince C (2015) Can the microcirculatory alterations in response to blood flow reduction in extracorporeal membrane oxygenation predict the ability of success in weaning? Atlanta

    Google Scholar 

  40. van Elteren HA, Ince C, Tibboel D, Reiss IK, de Jonge RC (2015) Cutaneous microcirculation in preterm neonates: comparison between sidestream dark field (SDF) and incident dark field (IDF) imaging. J Clin Monit Comput 29:543–548

    Article  PubMed  PubMed Central  Google Scholar 

  41. Aissaoui N, El-Banayosy A, Combes A (2015) How to wean a patient from veno-arterial extracorporeal membrane oxygenation. Intensive Care Med 41:902–905

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Akin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Akin, S., Ince, C., dos Reis Miranda, D. (2016). Cardiovascular Response to ECMO. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2016. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-27349-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27349-5_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27348-8

  • Online ISBN: 978-3-319-27349-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics