Skip to main content

(Multiple) Organ Support Therapy Beyond AKI

  • Chapter
  • 2047 Accesses

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

Abstract

More than 30 years ago, extracorporeal treatment was used in the intensive care unit (ICU) for the first time in order to deliver hemodialysis. Due to improvements in medical and surgical standards of care and an increase in the average age of patients, clinicians are today facing a significant increase in patients’ severity of illness at ICU admission and the frequent occurrence of multiple organ failure (MOF) with the simultaneous dysfunction of two or more organs. Extracorporeal treatments to support different organs (kidneys, liver, lungs, heart, septic blood) are now common in the ICU. However, paralleling the evolution of continuous dialytic treatments over the last two decades, in recent years, multiple organ support therapy (MOST) has been delivered as a “Christmas-tree like” addition of one system on another (e.g., continuous renal replacement therapy [CRRT] on extracorporeal membrane oxygenation [ECMO] or molecular adsorbent recycling system [MARS] on CRRT). Current developments and the future of MOST foresee the application of dedicated and integrated multipurpose advanced platforms for the support of patients with MOF. This review will detail extracorporeal blood purification treatments that can be delivered for dysfunction of organs other than the kidneys.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vincent J, Opal S, Marshall J, Tracey K (2013) Sepsis definitions: time for change. Lancet 381:774–775

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kaukonen K-M, Bailey M, Suzuki S et al (2014) Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000–2012. JAMA 311:1308–1316

    Article  CAS  PubMed  Google Scholar 

  3. Remick DG (2011) The pathogenesis of sepsis. Annu Rev Pathol 6:19–48

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lonneman G (1999) Tumor necrosis factor-alpha during continuous high-flux hemodialysis in sepsis with acute renal failure. Kidney Int 56:S84–S87

    Article  Google Scholar 

  5. Lehner GF, Wiedermann CJ, Joannidis M (2014) a systematic review and meta-analysis. Minerva Anestesiol 80:595–609

    CAS  PubMed  Google Scholar 

  6. Borthwick E, Hill C, Rabindranath K et al (2013) High-volume haemofiltration for sepsis. Cochrane Database Syst Rev 1:CD008075

    PubMed  Google Scholar 

  7. Clark E, Molnar AO, Joannes-Boyau O et al (2014) High-volume hemofiltration for septic acute kidney injury: a systematic review and meta-analysis. Crit Care 18:R7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Marshall JC, Foster D, Vincent JL et al (2004) Diagnostic and prognostic implications of endotoxemia in critical illness: results of the MEDIC study. J Infect Dis 190:527–534

    Article  CAS  PubMed  Google Scholar 

  9. Cruz DN, Antonelli M, Fumagalli R, Foltran F (2009) Early use of polymyxin b hemoperfusion in abdominal septic shock. JAMA 301:2445–2452

    Article  CAS  PubMed  Google Scholar 

  10. Payen DM, Guilhot J, Launey Y et al (2015) Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a multicenter randomized control trial. Intensive Care Med 41:975–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Early Use of Polymyxin B Hemoperfusion in the Abdominal Sepsis 2 Collaborative Group (2014) Polymyxin B hemoperfusion in clinical practice: The picture from an unbound collaborative registry. Blood Purif 37:22–25

    Article  Google Scholar 

  12. Connolly A, Vernon D (2000) Manipulations of the metabolic response for management of patients with severe surgical illness: review. World J Surg 24:696–704

    Article  CAS  PubMed  Google Scholar 

  13. Villa G, Zaragoza JJ, Sharma A et al (2014) Cytokine removal with high cut-off membrane: review of literature. Blood Purif 38:167–173

    Article  CAS  PubMed  Google Scholar 

  14. Villa G, Chelazzi C, Valente S et al (2014) Hemodialysis with high cutoff membranes improves tissue perfusion in severe sepsis: preliminary data of the Sepsis in Florence sTudy (SIFT). Crit Care 18:401

    Article  Google Scholar 

  15. Ronco C (2014) Standard nomenclature for renal replacement therapy in acute kidney injury: very much needed! Blood Purif 38:37–38

    Article  Google Scholar 

  16. Hotchkiss RS, Monneret G, Payen D (2013) Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol 13:862–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ronco C, Brendolan A, Lonnemann G et al (2002) A pilot study of coupled plasma filtration with adsorption in septic shock. Crit Care Med 30:1250–1255

    Article  PubMed  Google Scholar 

  18. Formica M, Olivieri C, Livigni S et al (2003) Hemodynamic response to coupled plasmafiltration-adsorption in human septic shock. Intensive Care Med 29:703–708

    PubMed  Google Scholar 

  19. Bellomo R, Tetta C, Ronco C (2003) Coupled plasma filtration adsorption. Intensive Care Med 29:1222–1228

    Article  PubMed  Google Scholar 

  20. Livigni S, Bertolini G, Rossi C et al (2014) Efficacy of coupled plasma filtration adsorption (CPFA) in patients with septic shock: A multicenter randomised controlled clinical trial. BMJ open 4:e003536

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mariano F, Morselli M, Holló Z et al (2015) Citrate pharmacokinetics at high levels of circuit citratemia during coupled plasma filtration adsorption. Nephrol Dial Transplant 30:1911–1919

    Article  PubMed  Google Scholar 

  22. Bone R, Balk R, Cerra F et al (2009) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. 1992. Chest 136(5 Suppl):e28

    Google Scholar 

  23. Liu KD, Matthay M (2008) Advances in critical care for the nephrologist: Acute lung injury/ARDS. Clin J Am Soc Nephrol 3:578–586

    Article  CAS  PubMed  Google Scholar 

  24. Esteban A, Alía I, Gordo F et al (2000) Prospective randomized trial ventilation and volume-controlled ventilation in ARDS. Chest 117:1690–1696

    Article  CAS  PubMed  Google Scholar 

  25. Dasta JF, Mclaughlin TP, Mody SH, Piech CT (2005) Daily cost of an intensive care unit day: The contribution of mechanical ventilation. Crit Care Med 33:1266–1271

    Article  PubMed  Google Scholar 

  26. Vieira JM, Castro I, Curvello-Neto A et al (2007) Effect of acute kidney injury on weaning from mechanical ventilation in critically ill patients. Crit Care Med 35:184–191

    Article  PubMed  Google Scholar 

  27. Kuiper JW, Groeneveld BJ, Slutsky AS, Plötz FB (2005) Mechanical ventilation and acute renal failure. Crit Care Med 33:1408–1415

    Article  PubMed  Google Scholar 

  28. Slutsky A, Ranieri V (2013) Ventilator-induced lung injury. N Engl J Med 369:2126–2136

    Article  CAS  PubMed  Google Scholar 

  29. Tremblay L, Slutsky A (1998) Ventilator-induced injury: from barotrauma to biotrauma. Proc Assoc Am Physicians 110:482–488

    CAS  PubMed  Google Scholar 

  30. Kuiper JW, Vaschetto R, Della Corte F et al (2011) Bench-to-bedside review: Ventilation-induced renal injury through systemic mediator release – just theory or a causal relationship? Crit Care 15:228

    Article  PubMed  PubMed Central  Google Scholar 

  31. ARDSNetwork (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  32. Fitzgerald M, Millar J, Blackwood B et al (2014) Extracorporeal carbon dioxide removal for patients with acute respiratory failure secondary to the acute respiratory distress syndrome: a systematic review. Crit Care 18:222

    Article  PubMed  PubMed Central  Google Scholar 

  33. Serpa Neto A, Simonis FD, Barbas CSV et al (2015) Lung-protective ventilation with low tidal volumes and the occurrence of pulmonary complications in patients without acute respiratory distress syndrome. Crit Care Med 28:1

    Google Scholar 

  34. Futier E, Jaber S (2014) Lung-protective ventilation in abdominal surgery. Curr Opin Crit Care 20:426–430

    Article  PubMed  Google Scholar 

  35. Feihl F, Perret C (1998) Permissive hypercapnia. European Respiratory Monograph 3:162–173

    Google Scholar 

  36. Contreras M, Masterson C, Laffey J (2015) Permissive hypercapnia: what to remember. Curr Opin Crit Care 18:26–37

    Google Scholar 

  37. Brian JJ (1998) Carbon dioxide and the cerebral circulation. Anesthesiology 88:1365–86

    Article  PubMed  Google Scholar 

  38. Doerr CH, Gajic O, Berrios JC et al (2005) Hypercapnic acidosis impairs plasma membrane wound reseating in ventilator-injured lungs. Am J Respir Crit Care Med 171:1371–1377

    Article  PubMed  PubMed Central  Google Scholar 

  39. Curley G, Contreras M, Nichol A et al (2010) Hypercapnia and acidosis in sepsis: a double-edged sword? Anesthesiology 112:462–472

    Article  PubMed  Google Scholar 

  40. Isobe J, Mizuno H, Matsunobe S et al (1989) A new type of low blood flow ECCO2R using a hemodialysis system in apneic states. ASAIO Trans 35:638–639

    Article  CAS  PubMed  Google Scholar 

  41. Nolte SH, Jonitz WJ, Grau J et al (1989) Hemodialysis for extracorporeal bicarbonate/CO2 removal (ECBicCO2R) and apneic oxygenation for respiratory failure in the newborn. Theory and preliminary results in animal experiments. ASAIO Trans 35:30–34

    CAS  PubMed  Google Scholar 

  42. Quinnell TG, Pilsworth S, Shneerson JM, Smith IE (2006) Prolonged invasive ventilation following acute ventilatory failure in COPD: weaning Results, survival, and the role of noninvasive ventilation. Chest 129:133–139

    Article  PubMed  Google Scholar 

  43. Menzies R, Gibbons W, Goldberg P (1989) Determinants of weaning and survival among patients with COPD who require mechanical ventilation for acute respiratory failure. Chest 95:398–405

    Article  CAS  PubMed  Google Scholar 

  44. Bein T, Weber-Carstens S, Goldmann A et al (2013) Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal CO2 removal versus “conventional” protective ventilation (6 ml/kg) in severe ARDS: The prospective randomized Xtravent-study. Intensive Care Med 39:847–856

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cove ME, MacLaren G, Federspiel WJ, Kellum J (2012) Bench to bedside review: Extracorporeal carbon dioxide removal, past present and future. Crit Care 16:232

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bein T, Weber F, Philipp A et al (2006) A new pumpless extracorporeal interventional lung assist in critical hypoxemia/hypercapnia. Crit Care Med 34:1372–1377

    Article  PubMed  Google Scholar 

  47. Del Sorbo L, Pisani L, Filippini C et al (2013) Extracorporeal CO2 removal in Hypercapnic patients at risk of noninvasive ventilation failure: a matched cohort study with historical control. Crit Care Med 43:120–127

    Article  Google Scholar 

  48. Ricci Z, Romagnoli S, Ronco C (2014) Extracorporeal support therapies. In: Miller R (ed) Miller’s Anesthesia, 2-Volume Set, 8th edn. Elsevier, Philadelphia, pp 3158–3181

    Google Scholar 

  49. MacLaren G, Combes A, Bartlett R (2011) Respiratory dialysis is not extracorporeal membrane oxygenation. Crit Care Med 39:2787–2788

    Article  PubMed  Google Scholar 

  50. Young J, Dorrington K, Blake G, Ryder W (1992) Femoral arteriovenous extracorporeal carbon dioxide elimination using low blood flow. Crit Care Med 20:805–809

    Article  CAS  PubMed  Google Scholar 

  51. Godet T, Combes A, Zogheib E et al (2015) Novel CO2 removal device driven by a renal-replacement system without hemofilter. A first step experimental validation. Anaesth Crit Care Pain Med 34:135–140

    Article  PubMed  Google Scholar 

  52. Forster C, Schriewer J, John S et al (2013) Low-flow CO2 removal integrated into a renal-replacement circuit can reduce acidosis and decrease vasopressor requirements. Crit Care 17:R154

    Article  PubMed  PubMed Central  Google Scholar 

  53. Quintard JM, Barbot O, Thevenot F, de Matteis O, Benayoun L, Leibinger F (2014) Partial extracorporeal carbon dioxide removal using a standard continuous renal replacement therapy device. ASAIO J 60:564–569

    Article  CAS  PubMed  Google Scholar 

  54. Siddiqui MS, Stravitz RT (2014) Intensive care unit management of patients with liver failure. Clin Liver Dis 18:957–978

    Article  PubMed  Google Scholar 

  55. Fagundes C, Ginès P (2012) Hepatorenal syndrome: A severe, but treatable, cause of kidney failure in cirrhosis. Am J Kidney Dis 59:874–885

    Article  PubMed  Google Scholar 

  56. Naka T, Wan L, Bellomo R et al (2004) Kidney failure associated with liver transplantation or liver failure: the impact of continuous veno-venous hemofiltration. Int J Artif Organs 27:949–955

    CAS  PubMed  Google Scholar 

  57. Patel S, Wendon J (2012) Regional citrate anticoagulation in patients with liver failure – time for a rethink? Crit Care 16:153

    Article  PubMed  PubMed Central  Google Scholar 

  58. Leventhal TM, Liu KD (2015) What a nephrologist needs to know about acute liver failure. Adv Chronic Kidney Dis 22:376–381

    Article  PubMed  Google Scholar 

  59. Larsen FS, Schmidt LE, Bernsmeier C et al (2016) High-volume plasma exchange in patients with acute liver failure: An open randomised controlled trial. J Hepatol 64:69–78

    Article  PubMed  Google Scholar 

  60. Willars C (2014) Update in intensive care medicine: acute liver failure. Initial management, supportive treatment and who to transplant. Curr Opin Crit Care 20:202–209

    Article  PubMed  Google Scholar 

  61. Saliba F, Camus C, Durand F et al (2013) Albumin dialysis with a noncell artificial liver support device in patients with acute liver failure. Ann Intern Med 159:522–531

    Article  PubMed  Google Scholar 

  62. Palazzuoli A, Ruocco G, Ronco C, McCullough P (2015) Loop diuretics in acute heart failure: beyond the decongestive relief for the kidney. Crit Care 19:296

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nalesso F, Garzotto F, Ronco C (2010) Technical aspects of extracorporeal ultrafiltration: Mechanisms, monitoring and dedicated technology. Contrib Nephrol 164:199–208

    Article  PubMed  Google Scholar 

  64. Ronco C, Haapio M, House A (2008) Cardiorenal syndrome. J Am Coll Cardiol 52:1527–1539

    Article  PubMed  Google Scholar 

  65. McMurray JJV, Adamopoulos S, Anker SD et al (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Eur Heart J 33:1787–1847

    Article  PubMed  Google Scholar 

  66. Costanzo MR, Guglin ME, Saltzberg MT et al (2007) Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol 49:675–683

    Article  CAS  PubMed  Google Scholar 

  67. Bart BA, Goldsmith SR, Lee KL et al (2012) Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med 367:2296–2304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Marenzi G, Muratori M, Cosentino ER et al (2014) Continuous ultrafiltration for congestive heart failure: The CUORE trial. J Card Fail 20:9–17

    Article  PubMed  Google Scholar 

  69. Krishnamoorthy A, Felker GM (2014) Fluid removal in acute heart failure: diuretics versus devices. Curr Opin Crit Care 20:478–483

    Article  PubMed  Google Scholar 

  70. Goldsmith SR, Bart BA, Burnett J (2014) Decongestive therapy and renal function in acute heart failure: Time for a new approach? Circ Heart Fail 7:531–535

    Article  PubMed  Google Scholar 

  71. Lala A, McNulty SE, Mentz RJ et al (2015) Relief and recurrence of congestion during and after hospitalization for acute heart failure. Circ Heart Fail 8:741–748

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Ricci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ricci, Z., Romagnoli, S., Ronco, C. (2016). (Multiple) Organ Support Therapy Beyond AKI. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2016. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-27349-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27349-5_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27348-8

  • Online ISBN: 978-3-319-27349-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics