SIFT and SURF Performance Evaluation and the Effect of FREAK Descriptor in the Context of Visual Odometry for Unmanned Aerial Vehicles

  • Abdulla Al-KaffEmail author
  • Arturo de la Escalera
  • José María Armingol
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9520)


Feature points detection and description play very important role in many of computer vision applications. Specifically in robot visual navigation systems (i.e. visual odometry or visual simultaneous localization and mapping), which need reliable high speed processing algorithms with low memory load. This paper presents a performance evaluation of the two robust feature detection/description algorithms (SIFT and SURF) with the effect of combining the FREAK descriptor. The performance of these algorithms was compared for the changes in noise, scale and rotation.


Feature points SIFT SURF FREAK Detectors Descriptors Visual odometry 


  1. 1.
    Nister, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 1, pp. I-652–I-659 (2004)Google Scholar
  2. 2.
    Scaramuzza, D., Fraundorfer, F.: Visual odometry (Tutorial). IEEE Robot. Autom. Mag. 18(4), 80–92 (2011)CrossRefGoogle Scholar
  3. 3.
    Karlsson, N., Di Bernardo, E., Ostrowski, J., Goncalves, L., Pirjanian, P., Munich, M.E.: The vSLAM algorithm for robust localization and mapping. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, pp. 24–29 (2005)Google Scholar
  4. 4.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  5. 5.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  6. 6.
    Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  7. 7.
    Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: center surround extremas for realtime feature detection and matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  8. 8.
    Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2548–2555. IEEE (2011)Google Scholar
  9. 9.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  10. 10.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571, November 2011Google Scholar
  11. 11.
    Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retina keypoint. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)Google Scholar
  12. 12.
    Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis. 3(3), 177–280 (2007)CrossRefGoogle Scholar
  13. 13.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. Int. J. Comput. Vis. 65(1–2), 43–72 (2005)CrossRefGoogle Scholar
  14. 14.
    Schaeffer, C.: A comparison of keypoint descriptors in the context of pedestrian detection: FREAK vs. SURF vs. BRISK. Citeseer (2013)Google Scholar
  15. 15.
    Schmidt, A., Kraft, M., Fularz, M., Domagala, Z.: The comparison of point feature detectors and descriptors in the context of robot navigation. J. Autom. Mob. Robot. Intell. Syst. 7(1), 11–20 (2013)Google Scholar
  16. 16.
    AR. Drone 2.0. Parrot new wi-fi quadricopter - Civil drone - Parrot. Cited March 2013

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Abdulla Al-Kaff
    • 1
    Email author
  • Arturo de la Escalera
    • 1
  • José María Armingol
    • 1
  1. 1.Intelligent Systems LaboratoryUniversidad Carlos III de MadridLeganésSpain

Personalised recommendations