Advertisement

Towards Stochastic Modeling of Neuronal Interspike Intervals Including a Time-Varying Input Signal

  • Giuseppe D’Onofrio
  • Enrica Pirozzi
  • Marcelo O. Magnasco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9520)

Abstract

We construct a LIF-type stochastic model for interspike times of the firing activity of a single neuron subject to a time-varying input signal. By using first passage time densities some numerical evaluations of ISI densities and comparisons with simulation results are given.

Keywords

Numerical Evaluation Interspike Interval Spike Time Firing Time First Passage Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Buonocore, A., Caputo, L., Pirozzi, E., Ricciardi, L.M.: The first passage time problem for gauss-diffusion processes: algorithmic approaches and applications to lif neuronal model. Methodol. Comput. Appl. Prob. 13, 29–57 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Buonocore, A., Caputo, L., Pirozzi, E., Ricciardi, L.M.: On a stochastic leaky integrate-and-fire neuronal model. Neural Comput. 22, 2558–2585 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Buonocore, A., Caputo, L., Pirozzi, E., Carfora, M.F.: Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons. Math. Biosci. Eng. 11, 189–201 (2014)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Buonocore, A., Caputo, L., Nobile, A.G., Pirozzi, E.: Gauss-Markov processes in the presence of a reflecting boundary and applications in neuronal models. Appl. Math. Comput. 232, 799–809 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Buonocore, A., Caputo, L., Nobile, A.G., Pirozzi, E.: Restricted Ornstein-Uhlenbeck process and applications in neuronal models with periodic input signals. J. Comput. Appl. Math. 285, 59–71 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Buonocore, A., Caputo, L., Nobile, A.G., Pirozzi, E.: Gauss-Markov processes for neuronal models including reversal potentials. Adv. Cognitive Neurodynamics (IV) 11, 299–305 (2015)CrossRefGoogle Scholar
  7. 7.
    D’Onofrio, G., Pirozzi, E.: Successive spike times predicted by a stochastic neuronal model with a variable input signal, Math. Biosci. Eng. (2015)Google Scholar
  8. 8.
    Giorno, V., Spina, S.: On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model. Math. Biosci. Eng. 11(2), 285–302 (2014)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Lánský, P., Ditlevsen, S.: A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models. Biol. Cybern. 99, 253–262 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kim, H., Shinomoto, S.: Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation. Math. Bios. Eng. 11, 49–62 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Taillefumier, T., Magnasco, M.O.: A fast algorithm for the first-passage times of Gauss-Markov processes with Holder continuous boundaries. J. Stat. Phys. 140(6), 1130–1156 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Taillefumier, T., Magnasco, M.O.: A phase transition in the first passage of a Brownian process through a fluctuating boundary: implications for neural coding. PNAS 110, E1438–E1443 (2013). doi: 10.1073/pnas.1212479110 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Taillefumier, T., Magnasco, M.O.: A transition to sharp timing in stochastic leaky integrate-and-fire neurons driven by frozen noisy input. Neural Comput. 26(5), 819–859 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Giuseppe D’Onofrio
    • 1
  • Enrica Pirozzi
    • 1
  • Marcelo O. Magnasco
    • 2
  1. 1.Dipartimento di Matematica e ApplicazioniUniversità di Napoli Federico IINapoliItaly
  2. 2.Laboratory of Mathematical PhysicsThe Rockefeller UniversityNew YorkUSA

Personalised recommendations