International Conference on Computer Aided Systems Theory

Computer Aided Systems Theory – EUROCAST 2015 pp 88-94 | Cite as

Eulerian Numbers Weigths in Distributed Computing Nets

  • Gabriel de Blasio
  • Arminda Moreno-Díaz
  • Roberto Moreno-Díaz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9520)

Abstract

We explore the possibilities of Eulerian numbers to define weights in layered networks and model distributed computation at the level of neurons receptive fields. These networks are then compared to those defined by binomial coefficients (Newton filters). Their potential as structures for signals convergence, divergence and overlapping is also established.

References

  1. 1.
    Leibovic, K.N.: Principles of brain function: information processing in convergent and divergent pathways. In: Pichler, F., Trappl, R. (eds.) Progress in Cybernetics and Systems, vol. VI, pp. 91–99. Hemisphere, Washington, D.C. (1982)Google Scholar
  2. 2.
    Moreno-Díaz, A., de Blasio, G., Moreno-Díaz Jr. R.: Distributed, layered and reliable computing nets to represent neuronal receptive fields. Math. Biosci. Eng. 11(2), 343–361 (2014)Google Scholar
  3. 3.
    Moreno-Díaz Jr., R.: Computación paralela y distribuida: relaciones estructura-función en retinas. Ph.D thesis, Universidad de Las Palmas de Gran Canaria (1993)Google Scholar
  4. 4.
  5. 5.
    Carlitz, L., Kurtz, D.C., Scoville, R., Stakelber, O.P.: Asymptotic properties of Eulerian numbers. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 23(1), 47–54 (1972)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gabriel de Blasio
    • 1
  • Arminda Moreno-Díaz
    • 2
  • Roberto Moreno-Díaz
    • 1
  1. 1.Instituto Universitario de Ciencias Y Tecnologías CibernéticasULPGCLas PalmasSpain
  2. 2.School of Computer ScienceMadrid Technical UniversityMadridSpain

Personalised recommendations